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The existence of a unique equilibrium is the classic tool for ensuring predictiveness of game theory. Typical
uniqueness results, however, are for Nash and Bayes-Nash equilibria and do not guarantee that natural
game playing dynamic converges to this equilibrium. In fact, there are well known examples in which the
equilibrium is unique, yet natural learning behavior does not converge to it. Motivated by this, we strive
for stronger uniqueness results. We do not only require that there is a unique equilibrium, but also that
this equilibrium must be learnable. We adopt correlated equilibrium as our solution concept, as simple
and natural learning algorithms guarantee that the empirical distribution of play converges to the space
of correlated equilibria. Our main result is to show uniqueness of correlated equilibria in a large class of
single-parameter mechanisms with matroid structure. We also show that our uniqueness result extends to
problems with polymatroid structure under some conditions. Our model includes a number of special cases
interesting on their own right, such as procurement auctions and Bertrand competitions. An interesting
feature of our model is that we do not need to assume that the players have quasi-linear utilities, and hence
can incorporate models with risk averse players and certain forms of externalities.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics
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1. INTRODUCTION
A desirable situation in game theory as well as in mechanism design is when the
game or mechanism has a unique equilibrium, as the unique equilibrium is typically
viewed as the outcome that is likely to emerge. Previous work in showing unique-
ness has focused on uniqueness of Nash and Bayes-Nash equilibria. These equilibria,
however, may not be learnable. In some cases natural learning dynamic converges
to them in polynomial time; in other cases it takes exponentially long to converge or
does not converge at all. For example, Kleinberg et al. [2011] give an example where
the unique Nash equilibrium of a game has low social welfare, while natural learn-
ing behavior in repeated play ensures high average value for all players. Further, no
polynomial-time algorithms for computing Nash and Bayes-Nash equilibria are known
for these games, and more more generally, computing Nash equilibria is known to be
PPAD complete [Daskalakis et al. 2009]. An alternate equilibrium concept that does
not share these drawbacks is the concept of a correlated equilibrium. Correlated equi-
libria form a convex set, and correlated equilibria can be found in polynomial time
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even in compactly described games [Papadimitriou and Roughgarden 2008; Jiang and
Leyton-Brown 2011]. Maybe more importantly, correlated equilibria emerge quite nat-
urally from sequences of repeated play in which the players minimize a form of regret,
and simple and natural polynomial-time algorithms are known for minimizing regret
(see [Blum and Mansour 2007] for a survey). Motivated by this, we ask: Under which
conditions does a mechanism have a unique correlated equilibrium? We thus strive for
stronger uniqueness results: We do not only want the equilibrium to be unique, we also
want it to be the outcome of natural learning dynamic.

We consider single-parameter mechanism design settings. In these settings the pri-
vate information held by the players—commonly referred to as their type—can be de-
scribed by a single number. We analyze mechanisms that collect reports by the play-
ers, and compute an outcome and payments. In the first part of the paper, we focus
on a large class of mechanisms that have binary outcomes for each player; they ei-
ther are selected or not selected. For such mechanisms, the outcome describes which
players win and which players lose, and the payments describe how much the play-
ers are charged. In the second part of the paper we extend our results to mechanisms
whose outcome for each player is an amount they win. These mechanisms compute the
amounts won by the players, and how much they have to pay for it.

We use a very general player utility function. We assume that a player’s utility is
zero if he loses, and it is given by some continuous function of the bid vector if he wins,
that is bounded away from zero if he reports less than its true type. Clearly, first- and
second-price mechanisms with quasi-linear utilities satisfy these requirements; but
they are also met by other mechanisms and utility functions.

— Our model incorporates risk averse players, as we do not assume quasi-linear util-
ities. Rather the utility can be any continuous function of the bids (and hence the
price).

— Our model incorporates certain types of externalities, as the utility of the player can
depend on the bid vector, and not only on his own price. For example, the utility of
one player can be dependent on the prices paid by others.

An interesting special case of our framework is Bertrand competition, where our
model includes risk averse firms and price-dependent demand. Another interesting
special case of our model are multi-unit auctions with unit-demand bidders where our
model—among other things—allows to model fairness by taking the highest-to-lowest
price ratio into account.

1.1. Our Results
Our main result in Section 3 is that mechanisms selecting an independent set of play-
ers maximizing the sum of reported types in a matroid have a unique correlated equi-
librium if the player utilities satisfy the mild assumptions above. The unique equilib-
rium we exhibit achieves maximum social welfare. Our main result is applicable to a
a vast number of practical problems, including

— procurement auctions (such as first or second price, or any combination) in which a
single buyer buys from multiple sellers,

— problems in communication networks in which communication links have to be
bought so that the bought communication links form a spanning tree, or

— instances of Bertrand competition in which several firms compete to sell their good
to a single buyer.

When applied to these problems our result shows that a large class of mechanisms has
a unique, socially optimal, and learnable equilibrium. In each case, our result applies



with very many different pricing rules, and we allow different players to be risk averse
to different extents and have externalities on the prices paid by others.

We also show that our uniqueness result for matroids is tight by demonstrating that
a unilateral relaxation of any of its requirements—mechanism is optimizing, feasibility
structure is a matroid, solution concept is that of a correlated equilibrium—can lead
to more than one equilibrium.

In Section 4, we extend our considerations to polymatroids. Polymatroids are an
important generalization of matroids, and arise, for example, in the context of

— sponsored search auctions [Goel et al. 2012] in which advertisers seek to be assigned
clicks on so-called sponsored search results that are shown along with the organic
search results produced by a search engine, or

— Bertrand networks [Babaioff et al. 2013] in which firms compete for markets consist-
ing of a single buyer and markets are either captive so that only one firm has access
to it or shared between two firms.

While there can be multiple equilibria in general polymatroid settings, we show condi-
tions under which uniqueness carries over. These apply for example in Bertrand net-
works without captive markets. Applied to this problem, our result shows that there
is a unique, learnable equilibrium with zero payoffs.

Together our uniqueness results thus imply stronger uniqueness results for models
of Bertrand competition than the ones that were previously known, extending the re-
sults to correlated equilibria, to networked markets, and to the general player utilities
studied here.

1.2. Proof Technique
The technique underlying our uniqueness results has similarities to iterated elimina-
tion of strictly dominated strategies, but in our case no strategies are strictly domi-
nated. Therefore, we do not argue on a per-player basis considering unilateral devia-
tions of a single player only. Instead, we carefully combine effects of unilateral devi-
ations by groups of players. As none of the involved players may benefit from these
deviations, we argue that certain ranges of the combined strategy space will never be
entered when playing a correlated equilibrium. This proof technique may be applicable
to settings beyond the settings studied here.

1.3. Related Work
Most obviously related is work that establishes uniqueness results. Work that falls into
this category includes work by Amann and Leininger [1996], Bajari [2001], Maskin and
Riley [2003], Lebrun [2006], and Chawla and Hartline [2013]. These works differ from
our work in that they typically have a specific mechanism in mind. They also differ
from the approach taken here in that they generally focus on Nash and Bayes-Nash
equilibria, and do not consider correlated equilibria.

There has been work on auctions on domains with matroid and polymatroid struc-
ture. Bikhchandani et al. [2011] present an ascending price auction for matroids
and polymatroids in which truthtelling is an ex-post equilibrium. Milgrom and Segal
[2014] and Dütting et al. [2014a,b] argue that for matroids this auction can be im-
plemented as a deferred-acceptance algorithm, which implies that it is weakly group-
strategyproof. In a sequence of papers, Hajiaghayi et al. [2007], Chawla et al. [2010],
and Alaei [2011] show how algorithms for proving so-called prophet inequalities can be
turned into truthful approximation mechanisms. Prophet inequalities for matroids and
polymatroids are given in [Kleinberg and Weinberg 2012] and [Dütting and Kleinberg
2013]. The main difference between these works and ours is that they only consider
truthful mechanisms, while we also consider non-truthful ones.



Another related work that regards uniqueness of equilibria as a desirable design
criterion is work on implementation theory (see, e.g., [Jackson 2001], [Maskin and
Sjöström 2002], and [Palfrey 2002]). This theory studies games with multiple equilib-
ria and seeks to alter the rules of these games so that they have a unique equilibrium.
A fundamental difference between this and our approach is that this theory aims at
changing a given game, while we regard the mechanism as given. Another important
difference is that this literature focuses on Nash and Bayes-Nash equilibria, while our
results are for the broader class of correlated equilibria.

Closest to our work in spirit (but not in techniques) are the work of Blum et al. [2006]
and Even-Dar et al. [2009], who show that no-regret learning dynamic converges to
the unique Nash equilibrium in routing games, and in concave games respectively. We
extend this literature to a broad class of mechanisms, and show our uniqueness of
correlated equilibria result under a very general model of user utilities that includes
both risk averse players and certain forms of externalities.

There has also been work on showing unique outcomes in Bertrand competition. The
standard model assumes that there is a single market that is accessed by all firms
and utilities are quasi-linear. For this model Baye and Morgan [1999] and Kaplan and
Wettstein [2000] show that there is a unique mixed Nash equilibrium, and Wu [2008]
claims that there is a unique correlated equilibrium. The player utilities considered
in these papers are less general than the ones we consider here, and do not allow
to model risk averseness or externalities included in our model. Nadav and Piliouras
[2010] consider learning outcomes in the standard model. In contrast to our results,
they find that learning behavior can sustain a non-zero pricing. Our results show that
this conclusion is the result of the weak model of learning used. Nadav and Piliouras
[2010] consider coarse correlated equilibrium as their model of learning outcome. We
show that with the slightly more sophisticated learning required to reach correlated
equilibrium, the non-zero price equilibria are no longer sustained. Babaioff et al. [2013]
consider a generalization of the classic setting with multiple markets and restricted
access to these markets. They show that in the absence of captive markets, there is
a unique mixed Nash equilibrium for quasi-linear utilities. We extend this result to
correlated equilibria and the more general player utilities studied here.

Our approach is also related to the literature on supermodular games [e.g., Topkis
1968; Vives 1990; Milgrom and Roberts 1990]. This approach is similar to our ap-
proach in that the structure of these games allows for iterated elimination of strictly
dominated strategies. This, in turn, allows to isolate smallest and largest equilibrium
reports, which enables qualitative statements about correlated equilibria. Unlike our
approach, however, it generally does not lead to uniqueness results. In contrast, games
belonging to our class typically do not contain strictly dominated strategies.

A final related direction is work on smooth games [Roughgarden 2009, 2012] and
smooth mechanisms [Syrgkanis and Tardos 2013]. This literature is related in that it
seeks to analyze the quality of correlated equilibria, but unlike our approach it typi-
cally only allows to prove approximation guarantees. Our work is different in that its
primary goal is to prove the uniqueness of the equilibria achieving socially optimal
outcome.

2. PRELIMINARIES
Our main uniqueness results apply to a large class of problems and mechanisms. The
first set of problems that we consider are binary single-parameter problems, in which
players are characterized by a single privately held number and can either “win” or
“lose”. Which players can simultaneously win is governed by feasibility constraints,
where we focus on problems in which the feasible sets form a matroid. This feasibil-
ity structure covers many interesting applications, including various forms of forward



and procurement auctions. Then in Section 4 we derive conditions under which our re-
sults extend to problems in which players can win different quantities and the feasible
quantities form a polymatroid, extending the class of applications.

The class of mechanisms that we consider include a broad range of pricing policies.
Rather than defining the policies considered explicitly, we define them implicitly via
the utilities that they induce for the winning players. Our assumptions regarding the
utilities are very general. We only require that the utility for winning is strictly posi-
tive if a player under-reports, that the utility is continuous in the private information
held by the players, and that over-reporting is weakly dominated by reporting truth-
fully. These requirements are satisfied by a large class of mechanisms and utilities.
While the generalized-first price mechanism with quasi-linear utilities falls into this
category, prices can generally depend on the bids in more complex ways and utilities
need not be quasi-linear. This allows, amongst others, to model risk averse players or
players sensitive to fairness constraints.

2.1. Definitions
Binary mechanism design problem. A binary single-parameter mechanism design
problem is defined by the triple (N,F ,Θ). The set N is the set of players. The fam-
ily of sets of players F ⊆ 2N describes the sets of players that can be feasibly ac-
cepted. We refer to the players that are picked as winners, and to the remaining ones
as losers. The fact that a player can either win or lose makes it a binary problem. Fi-
nally, Θ =

∏n
i=1 Θi is the type space, where θi ∈ Θi = [θmin, θmax] ⊆ R is the private

information held by player i. Note that we do not require types to be non-negative. Pos-
itive types correspond to valuations, and negative types to costs. The welfare achieved
by a feasible set of players F ∈ F is

∑
i∈F θi.

Direct mechanism. We consider direct mechanisms. This means that the player’s bid
to the mechanism is a reported type. Note that, as the type is a player’s private infor-
mation, this report need not be truthful. We use b ∈ Θ to denote the reported types
of the players, distinguishing them from their true types, which we denote by θ. A di-
rect mechanism M = (f, p) consists of an outcome rule f : Θ → F and a payment rule
p : Θ → Rn, both use the reported types b as input and then either compute a set of
winners or payments.

Player utility. For the outcome of a mechanism, the player’s utility depends on the fact
whether he wins or not, on his type, and on the bids of all players (which determine
payments). We consider full information games, so the types θ are a fixed property of
the players. Therefore, we express the utility only as a function of b. We assume that
ui(b) = wi(b) if i ∈ f(b) and 0 otherwise. Expressing the utility through the functions
wi allows us to impose conditions on wi. We impose the following requirements on the
function wi:

(1) If underreporting the type and winning, the utility is strictly positive, i.e., wi(b) > 0
if bi < θi.

(2) The function wi is continuous in b.
(3) Reporting a type bi > θi is weakly dominated by reporting θi, i.e., ui(b) ≤ ui(θi, b−i)

if bi ≥ θi.
Note that we do not assume that wi(b) depends only on the price i pays. The utility
of a player can depend on the price paid by others. This allows us to model certain
externalities, such as fairness. The formulation also can model risk-averse or risk-
seeking players, as the utility is not required to be quasi-linear. In general, we do not
even assume the functions wi to be monotonic. However, if wi is strictly decreasing in
bi for all i, we will get stronger uniqueness results.



Matroid optimization. Feasibility is defined by matroid constraints. A pair consisting of
N and I ⊆ 2N is a matroid if

(1) ∅ ∈ I,
(2) S ⊆ T ∈ I implies S ∈ I, and
(3) S, T ∈ I and |T | > |S| implies the existence of t ∈ T such that S ∪ {t} ∈ I.

The sets S ∈ I are referred to as independent sets and a maximal independent set is a
basis. A set S ⊆ N is called a spanning set if it is the superset of a basis.

In a value-maximization problem types are positive and the set of feasible solutions
are independent sets. In a cost-minimization problem, types are negative and feasible
solutions are spanning sets. In either case optimal solutions are bases. Hence we can
unify the treatment of the two cases by considering the problem of finding a welfare-
maximizing basis. We refer to a mechanism that computes such a basis as optimizing.

To illustrate this definition and to develop some intuition for what types of problems
have matroid structure consider the following examples:

— In a uniform matroid of rank k the independent sets are the subsets of size at most
k, where k is some non-negative integer. The bases are the sets of cardinality exactly
k and the spanning sets are the set of at least k elements.

— A transversal matroid is defined by means of an undirected bipartite graph
(V1, V2, E); its ground set is V1 and a subset S ⊆ V1 is independent if the vertices
in S can be simultaneously matched to vertices in V2.

— A graphic matroid is defined by an undirected graph G = (V,E); the ground set is E
and the independent sets are the acyclic subsets of E.

Solution concept. We assume that the players act strategically and that they seek to
maximize their utility. The game-theoretic solution concept that we will impose is that
of a correlated equilibrium. A correlated equilibrium is a distribution D over reports
b ∈ Θ such that for every player i and possible deviation φ : Θi → Θi,

Eb∼D[ui(bi, b−i)] ≥ Eb∼D[ui(φ(bi), b−i)].

This generalizes mixed Nash equilibria by allowing the individual players’ strategies
to be correlated. An example of a possible deviation is φ(bi) = min{0.5, bi}, which re-
places high bids by 0.5.

Correlated equilibria were introduced by Aumann [1974], using a form of correlation
device—a coordinator outside the game—that gives players a recommendation on what
to play. This leads naturally to the equilibrium condition that requires that no player
can benefit from unilateral deviations of the form “each time the correlation device
asks me to report x, I always report y instead.”

Correlated equilibria are attractive because they can also be defined as limit points
of sequences of repeated play in which the players use learning strategies, strategies
that guarantee that they have no swap regret in the limit. See survey of Blum and
Mansour [2007] and the recent book of Hart and Mas-Colell [2013] for more on the
notion of correlated equilibria, and for simple and natural learning algorithms that
guarantee the required form of vanishing regret.

We follow the convention to only consider undominated equilibria [e.g., Caragian-
nis et al. 2012]. Together with our assumptions regarding the utility functions this
translates into a “no overbidding” assumption.

2.2. Examples
Single-item auction with risk-averse players. Probably the simplest example that our
analysis applies to is a single-item auction in which a single seller sells to exactly one



of several buyers. The feasibility structure is a uniform matroid of rank one. For first-
price payments with quasi-linear utilities the utilities for winning are wi(b) = θi − bi
for all i ∈ N . Second-price payments are captured by wi(b) = θi−min{bi,maxj 6=i bj}.1 In
both cases we can model risk averseness by applying a non-decreasing concave func-
tion to the quasi-linear term.

Bertrand competition with price-dependent demand. A similarly simple example is a
Bertrand competition in which a single buyer buys from exactly one of several firms.
The feasibility structure is again a uniform, rank one matroid. If first-price payments
are used and utilities are quasi-linear, then the utility for winning is wi(b) = θi− bi for
all i ∈ N. Here both θi and bi should be thought of as negative. This can be general-
ized by setting wi(b) = di(bi)(θi − bi), where di is a non-increasing continuous demand
function.

Multi-unit auction with fairness-sensitive players. All these examples can be generalized
to more sophisticated matroids. As a concrete example consider a multi-unit auction in
which a single seller sells to exactly k unit-demand buyers. This is a uniform matroid
of rank k. With first-price payments and quasi-linear utilities the utilities for winning
are again wi(b) = θi−bi for all i ∈ N . Denote the 1-highest bid by b(1) and the k-highest
bid by b(k). Then a desire for prices to be as equal as possible can be expressed by
multiplying the wi(b) function above with 1 − (b(1) − b(k))/b(1), which is maximized if
the 1-highest and k-highest bids are identical.

3. MATROID FEASIBILITY STRUCTURE
In this section we show our main result: Given a matroid feasibility structure, an opti-
mizing mechanism, and utility functions as defined above, there is a unique correlated
equilibrium, which is socially optimal. We first provide some intuition for the proof of
our main result by considering the special case of a single-item, first-price auction with
two buyers. Then we prove the main result for the general case. We conclude by show-
ing that a unilateral relaxation of any of our assumptions—correlated equilibrium,
matroid feasibility structure, exact optimization—can lead to the existence of multi-
ple correlated equilibria, which shows that our assumptions are not only sufficient but
also necessary.

3.1. Intuition for Proof of Main Result
We begin by illustrating the idea behind the proof of our main result. To this end
consider a single-item, first-price auction with two buyers. Assume that the buyers
have quasi-linear utilities with a valuation of one for winning. We claim that in the
unique correlated equilibrium both buyers bid one with certainty.

We will show by induction that if D is a correlated equilibrium, then for all x < 1 the
probability that both buyers use a bid bi ∈ [0, x] for i ∈ {1, 2} is zero. Given this claim
for all x < 1, taking the limit as x→ 1 we get that the probability that both buyers use
a bid bi < 1 is also 0. To see that both buyers bid bi = 1 with probability 1, note that
with a bid of bi = 1 a buyer has 0 utility in a first-price auction. If one of the buyers
is bidding bi < 1 with positive probability, the other buyer has an incentive to bid less
than 1 and win with positive probability, showing the claim that both buyers must bid
one with certainty.

See Figure 1 for an illustration of the inductive argument that the probability that
both buyers use a bid bi ∈ [0, x] for i ∈ {1, 2} must be zero. We will use A through F

1Note that the minimum operator is only necessary because we assume the functions wi to be defined on
the entire type space Θ, even for report vectors where i is a loser. This will help us to avoid cumbersome
notation.



Fig. 1. Single-Item, First-Price Auction with Two Buyers

to denote the probability that the pair of bids falls into the corresponding region on
the figure. We will show that this is the case for a sequence of x values with x → 1.
The induction hypothesis is that the probability that both buyers bid bi ∈ [0, x] for
i ∈ {1, 2} is zero. That is B = C = 0 in the figure. For the inductive step we choose
ε > 0 such that x+ 2ε < 1. The inductive step is to show that the probability that both
buyers bid bi ∈ [0, x + ε] for i ∈ {1, 2} is zero. The proof of the inductive step consists
of two parts. In the first part we argue that the probability that one of the buyers
bids bi ∈ [x, x + ε] while the other buyer bids b−i ∈ [0, x] for i ∈ {1, 2} is zero. That is
A = D = 0 in the figure. In the second part we show that the probability that both
players bid bi ∈ [x, x+ ε] for i ∈ {1, 2} is zero. That is E = F = 0 in the figure.

For the first part we consider the deviation of buyer i for i ∈ {1, 2} that maps bids
in [0, x] to x + ε and leaves all other bids unchanged. Since we assume that the bids
constitute a correlated equilibrium neither deviation should be beneficial. The player
who used to lose in areas A and B will now win, a gain in utility, but will pay a higher
price in area C, while the deviation is not effecting the outcome in other areas. Similar
argument applies to the other player. We obtain that

0 ≥ (A+B)(1− (x+ ε))− Cε, and
0 ≥ (D + C)(1− (x+ ε))−Bε.

By the induction hypothesis B = C = 0. So the right-hand sides of the above inequali-
ties simplify to A(1− (x+ ε)) and D(1− (x+ ε)). Since x+ ε < 1 both A > 0 and D > 0
would lead to a contradiction. We conclude that A = D = 0.

For the second part we consider the deviation of buyer i ∈ {1, 2} that maps bids
in [x, x + ε] to x + ε. The equilibrium condition again dictates that neither of these
deviations should be beneficial. We obtain that

0 ≥ E(1− (x+ ε))− (F +D)ε, and
0 ≥ F (1− (x+ ε))− (E +A)ε.

As we have shown in the first step A = D = 0. Hence the right-hand sides of the above
inequalities simplify to E(1− (x+ ε))− Fε and F (1− (x+ ε))−Eε. So by summing up
the two inequalities we obtain

0 ≥ (E + F )(1− (x+ 2ε)).

Since we have chosen ε > 0 such that x + 2ε < 1 we get a contradiction if E + F > 0.
We conclude that E = F = 0.



3.2. Uniqueness of Winners
The proof of our main result follows a similar pattern. We inductively show that cer-
tain regions of the strategy space must be empty by carefully combining individual
deviations of the players, which—by the equilibrium property—need not be beneficial.
The main difficulties in generalizing the above proof sketch are: First, we need the
argument to work for very general utility functions and mechanisms. Second, we need
to ensure that the combination of the individual deviations works for more general
feasibility structures.

Our main technical tool is Lemma 3.1. To be able to work with general utility func-
tions, we use the Heine-Cantor Theorem, which shows that continuous functions on a
compact set are uniformly continuous, hence utility functions are uniformly continu-
ous. To work with more general feasibility structures we use properties of matroids.
We show that a player i can only win with a bid bi if this player i is contained in all
bases of the matroid that arises if we restrict the original matroid to players of type at
least bi. In any other case, i.e., if there is another player j whose type is also at least bi
and who could substitute player i, then player i will never win when reporting bi.

We then use Lemma 3.1 to show that in any correlated equilibrium the set of win-
ners is always a social-welfare maximizing basis OPT. This is due to the fact that, by
Lemma 3.1, for players in OPT it makes no sense to choose a bid that does not ensure
outbidding the other competing players.

LEMMA 3.1. Let i ∈ N be some arbitrary player and let bi < θi. Then, in any cor-
related equilibrium, i never wins with bid bi unless i is contained in all bases of the
matroid restricted to players of type at least bi.

PROOF. Without loss of generality assume that the players are ordered such that
θ1 ≤ θ2 ≤ . . . ≤ θn with ties broken arbitrarily.2 For each m ∈ [n], let Am ⊆ {m, . . . , n}
be the set of players who are not contained in every basis of the matroid restricted to
m, . . . , n. Observe that A1 ⊇ A2 ⊇ . . . ⊇ An. We want to show that no player in Am will
ever win while reporting a type below θm. That is,

Pr[bi < θm, i ∈ f(b)] = 0 for every i ∈ Am.
We will prove this by induction on m.
For the induction basis, set θ0 = θmin and A0 = N . Given these definitions, the case

m = 0 is trivially true because bi < θ0 is impossible by definition of possible reports.
Let us turn to the induction step. By induction hypothesis, we know that the re-

spective statements are true for some m. As Am ⊇ Am+1, this implies that Pr[bi <
θm, i ∈ f(b)] = 0 for all i ∈ Am+1. Considering now a fixed m, let B(x) ⊆ Θ be the
set of bid vectors b such that there is some i ∈ Am+1 with bi < x and i ∈ f(b). The
above statement now translates to Pr[b ∈ B(θm)] = 0 and we would like to show that
Pr[b ∈ B(θm+1)] = 0. For this purpose, we will define an increasing sequence of bids
(θm,t)t∈N such that θm,0 = θm and limt→∞ θm,t = θm+1. By using another, nested induc-
tion, we will show that Pr[b ∈ B(θm,t)] = 0 for all t ∈ N. As B(θm+1) = ∪∞t=0B(θm,t), this
shows the claim.

The idea behind the sequence of bids and the inductive step in the inner induc-
tion is as follows: By induction hypothesis, we have Pr[b ∈ B(θm,t)] = 0. We then
define θm,t+1 = θm,t + δt+1 for a sufficiently small δt+1. If there were now a player
i ∈ Am+1 winning with a bid below θm,t+1, there would also be a corresponding loser
j ∈ Am+1, who would win by reporting θm,t+1 instead. We therefore consider for each
player the unilateral deviation in which he exchanges reports smaller than θm,t+1 with

2Note that the following argument holds for any tie-breaking rule applied here. Therefore the statement is
shown for any player i, even if he ties with another player.



report θm,t+1. For a previously winning bid, this can only mean a minor reduction in
utility because this bid must have been at least θm,t by induction hypothesis. On the
other hand, if this deviation turns i into a winner, he faces a major gain. When sum-
ming up the utility changes of all players, these gains dominate the losses. As the
sum of utility changes cannot be positive by equilibrium property, this then shows
Pr[b ∈ B(θm,t+1)] = 0

For a formal proof, consider the sequence (θm,t)t∈N as defined by θm,t+1 =
θm,t + δt+1, where δt+1 is defined as follows. As all wi are continuous functions
on a compact set, they attain their minimum value. Let therefore be Ut+1 =
mini∈Am+1

minθ−i∈Θ−i
wi(θm,t, b−i). By definition Ut+1 > 0. All wi are continuous func-

tions on a compact set. By Heine-Cantor theorem, this implies that they are uni-
formly continuous. This means, there is a δt+1 such that for all i ∈ N , all b−i, and
all bi ∈ [θm,t, θm,t + δt+1], we have wi(θm,t, b−i)− εt+1 ≤ wi(θi, b−i) ≤ ui(θm,t, b−i) + εt+1,
where εt+1 = Ut+1

2n+1 . In words: Each player i ∈ N will, when increasing his bid unilater-
ally from θm,t by at most δt+1, change his wi function by at most εt+1.

For each player i ∈ Am+1, we consider the deviation φ : Θi → Θi such that φ(bi) =
θm,t+1 for θi ∈ [θm,0, θm,t+1] and φ(bi) = bi otherwise. Let Gi = ui(φ(bi), b−i) − ui(b)
be player i’s gain in utility by this deviation. By equilibrium property, we know that
E[Gi] ≤ 0 for all i ∈ Am+1. In the following, we will lower-bound E[

∑
i∈Am+1

Gi] in terms
of Pr[b ∈ B(θm+1)]. In combination with the equilibrium property, this will then show
our claim.

The expectation in E[Gi] is over the bid vector b. In the following, we will first leave
out this expectation and fix some bid vector b ∈ Θ. Depending on b, we derive certain
bounds on Gi. To be more precise, we distinguish the three cases b ∈ B(θm,t), b ∈
B(θm,t+1) \B(θm,t), and b 6∈ B(θm,t+1). Note that, in general, Gi can only be negative if
i ∈ f(b). Due to monotonicity, a winning bid remains a winning bid under the deviation,
i.e., i ∈ f(b) implies i ∈ f(φ(bi), b−i).

In case b ∈ B(θm,t), we bound the utility decrease trivially by Di = maxθ∈Θ wi(θ) −
minθ∈Θ wi(θ). This is well-defined as wi is a continuous function on a compact set.
Therefore, we have

∑
i∈Am+1

Gi ≥ −nDi.
Let us now turn to the case that b ∈ B(θm,t+1) \ B(θm,t). As b ∈ B(θm,t+1) \ B(θm,t),

there is an i ∈ Am+1, winning with a bid bi ∈ [θm,t, θm,t+1). So let S1 = f(b) ∩ {m +
1, . . . , n} be the corresponding basis of the matroid restricted to players m + 1, . . . , n.
By definition ofAm+1, there has to be another basis S2 ⊆ {m+1, . . . , n} such that i 6∈ S2.
Considering the two independent sets S1 \ {i} and S2, we observe that there is some
j ∈ S2\S1 such that (S1\{i})∪{j} is independent by augmentation property. This player
j is obviously also contained in Am+1 and would become a winner by outbidding i. That
is, we have uj(b) = 0 and uj(φ(bj), b−j) ≥ Ut+1 − εt+1, which means Gj ≥ Ut+1 − εt+1.
For all other players, we observe that each winning bid remains a winning bid under
the deviation. In this case, the utility may decrease but at most by 2εt+1. A losing bid
might become a winning bid after the deviation. As θi′ ≥ φ(bi′), we get Gi′ ≥ 0 in these
cases. Thus, summing over all players in Am+1, we get

∑
i∈Am+1

Gi ≥ Ut+1 − 2nεt+1.
Finally, we observe that if b 6∈ B(θm,t+1), then Gi = 0 for all i ∈ Am+1.
Taking now the expectation of

∑
i∈Am+1

Gi, we get

E[
∑

i∈Am+1

Gi] ≥ −nDi Pr[b ∈ B(θm,t)] + (Ut+1 − 2nεt+1) Pr[b ∈ B(θm,t+1) \B(θm,t)] .

By induction hypothesis Pr[b ∈ B(θm,t)] = 0. As Ut+1 − 2nεt+1 > 0 by definition of
εt+1 and E[Gi] ≤ 0 for all i ∈ Am+1 by equilibrium property, this means that Pr[b ∈
B(θm,t+1) \B(θm,t)] = 0.



THEOREM 3.2. In any correlated equilibrium, the set f(b) is a social-welfare maxi-
mizing basis with probability 1.

PROOF. For the sake of readability, for this proof, we assume that there are no two
players having the exact same type. This way, the social-welfare maximizing basis
OPT is unique. The proof with multiple optimal bases works the same way but is
notationally cumbersome.

Again, without loss of generality, let the players be ordered such that θ1 < θ2 < . . . <
θn. We now show by complete downward induction that Pr[i ∈ f(b)] = 1 if i ∈ OPT and
Pr[i ∈ f(b)] = 0 otherwise. So, let us fix some i and assume that we have already shown
this claim for i + 1, . . . , n. If i 6∈ OPT , clearly Pr[i ∈ f(b)] = 0 because with probability
1 among i + 1, . . . , n exactly the players in OPT win. As OPT can be considered the
result of a greedy selection, we know that i cannot be added. So, it only remains to
show that Pr[i ∈ f(b)] = 1 if i ∈ OPT . Let now be j < i the largest index such that i is
not included in every basis of the matroid restricted to j, . . . , n. Observe that for every
bi > θj , player i will be included in the output due to no-overbidding. Furthermore, by
the above lemma, we know that Pr[i ∈ f(b), bi < θj ] = 0. Note that, as we have not
fixed a tie-breaking rule, it may occur that i is sometimes included in the output and
sometimes is not if bi = θj .

Let us define p = Pr[i 6∈ f(b), bi ≤ θj ] and q = Pr[i ∈ f(b), bi = θj ]. We would like to
show that p = 0. So, let us assume that p > 0. In this case, let U = minθ−i∈Θ−i

wi(θj , θ−i)

and let δ > 0 such that wi(θj +δ, b−i) ≥ wi(θj , b−i)− Up
2 for all b−i ∈ Θ−i. Such a δ exists

due to uniform continuity.
Now consider the deviation φ : Θi → Θi such that φ(bi) = θj + δ for bi ≤ θj and

φ(bi) = bi otherwise. Under this deviation, every bid becomes a winning bid because
i is included in every basis of the matroid restricted to j + 1, . . . , n and we have no-
overbidding. There is gain in utility of at least (U − Up

2 )p from winning, and a small
loss of utility of at most Up

2 q due to the increased price when i was winning. The overall
expected gain in utility is at least (U− Up

2 )p− Up
2 q ≥

Up
2 . This is a contradiction if p > 0.

3.3. Uniqueness of Winning Bids
So far, we have shown that under very mild conditions the set of winners is unique.
Let us now additionally assume that the functions wi are strictly increasing in bi, like,
for example, in first-price auctions with quasi-linear utilities, or a smooth function
modeling risk aversion. In this case, uniqueness is even stronger because not only the
set of winners is unique but also their respective bids.

THEOREM 3.3. Let i ∈ OPT be a player such that wi is strictly increasing in bi.
Furthermore, let j ∈ N , j 6= i be the player maximizing θj such that (OPT \ {i})∪ {j} is
a basis. Then in any correlated equilibrium Pr[bi ∈ [θj , θj + δ]] = 1 for all δ > 0.

PROOF. We have already shown that i wins with probability 1 but never wins with
a bid below θj , thus Pr[bi < θj ] = 0. To show Pr[bi > θj + δ] = 0 for δ > 0, consider
the deviation φ : Θi → Θi such that φ(bi) = θj + δ

2 for bi ≥ θj and φ(bi) = bi otherwise.
In addition, define m : Θ−i → R by m(b−i) = wi(θj + δ

2 , b−i) − wi(θj + δ, b−i). As wi
is a continuous function, m also is. Furthermore, m(b−i) > 0 for all b−i and Θ−i is a
compact set. Therefore M := minb−i∈Θ−i m(b−i) exists and is positive.

Observe that any bid bi > θj ensures that player i wins. This means that under the
deviation, every bid remains a winning bid. Due to monotonicity of wi, the player’s
utility increases by at least M in this case. So, we can lower-bound the gain by the
deviation by M Pr[bi ≥ θi + δ]. This implies Pr[bi ≥ θi + δ] = 0.



3.4. Necessity of Conditions
We conclude this section with three examples that show that each of the assump-
tions on which our uniqueness result is based—correlated equilibria, matroid feasibil-
ity structure, and exact optimization—is necessary. More specifically, we demonstrate
that a unilateral relaxation of each of these assumptions can lead to the existence of
more than one equilibrium.

Example 3.4 (Correlated Equilibria). Nadav and Piliouras [2010] consider the fol-
lowing model of Bertrand competition: The utility of player i is ui(p) = Di(p)(pi − ci),
where Di(p) = 0 if pi > pj for some j and Di(p) = (a− pi)/(b(m+ 1)) otherwise, where
m is the number of players j that are tied with player i. Let π(p) denote the utility for
price p if there is a unique winner. Then there are several coarse correlated equilibria
parameterized by c < α < β < γ ≤ (a + c)/2 in which π(γ) ∈ (0, π((a + c)/2)], π(β) =
(1/(2n−1))n−1 ·π(γ), and π(α) = (n−1)/(2n−1) ·π(β). The payoff of each player in the
corresponding coarse correlated equilibrium is 1/2·π(α)/n+1/2·[(1−(n−1)/n·ρ)·π(β)],
where ρ = (π(β)/π(γ))1/(n−1).

Example 3.5 (Matroid Feasibility Constraints). Consider a setting with three play-
ers N = {1, 2, 3} and types θ1 = θ2 = 2, θ3 = 3. Feasible solutions are {1, 2} and {3}
and subsets. This is clearly not a matroid because the maximal feasible sets have dif-
ferent sizes. Furthermore, suppose that Vickrey-Clarke-Groves (VCG) mechanism is
used. Then there are multiple pure Nash equilibria: E.g. b = (0, 0, 3) and b′ = (2, 2, 0).
The equilibrium b′ is socially optimal, b is not.

Example 3.6 (Exact Optimization). Consider a setting with five players N =
{a, b, c, d, e} and feasible set of players 2N . Suppose the goal is to maximize social wel-
fare, and that the players have a value of 3, 3, 2, 1 and 1 for winning. An algorithm
that does not optimize social welfare considers the sets {a, b}, {c}, or {d, e} and chooses
the set of bidders among these sets of bidders with the highest sum of bids. There are
two pure Nash equilibria, namely (2, 0, 2, 0, 0) and (0, 2, 2, 0, 0). In these equilibria bid-
ders {a, b} win and pay 2 and 0 resp. 0 and 2. Also note that there exists a correlated
equilibrium that is not a mixture over pure Nash equilibria, namely bids (2, 0, 2, 0, 0),
(0, 2, 2, 0, 0), and (0, 0, 1, 1, 1) played with probabilities 2/5, 2/5, and 1/5.

4. POLYMATROID FEASIBILITY STRUCTURE
Being able to prove uniqueness for binary single-parameter problems with matroid
structure, the natural next setting to consider are integer single-parameter problems
with polymatroid structure. In these problems players can win multiple units, and the
feasibility constraint is a submodular set function. We focus on settings in which the
utilities are additively separable across units, with the contribution from each unit
satisfying the same conditions as in the binary case.

We start by formally defining the problems and mechanisms that we study in this
section. Afterwards we present two counterexamples that show that the uniqueness
results that we obtained for matroids generally do not carry over to polymatroids. We
conclude by introducing a restricted class of polymatroids, and showing that for this
restricted class our results do carry over.

4.1. Definitions
Integer mechanism design problem. An integer single-parameter mechanism design
problem is defined by the triple (N,X,Θ). As before N denotes the set of players. A
feasible outcome x ∈ X ⊆ Nn+ now corresponds to an n-dimensional vector, where
xi ∈ N+ specifies how many units player i wins. The type space is again Θ =

∏n
i=1 Θi,



where θi ∈ Θi = [θmin, θmax] ⊆ R represents the private information held by agent i.
The welfare of a feasible outcome x ∈ X is given by

∑
i∈N xi · θi.

Direct mechanism. As in the binary case we consider direct mechanisms in which the
players’ bid to the mechanism is a reported type, and we use b for the bids and θ for
the types. More formally, a direct mechanism M = (f, p) now consists of an outcome
rule f : Θ→ X and a payment rule p : Θ→ Rn.

Player utilities. We assume that player i’s utility for winning xi units is xi ·wi(b), where
wi satisfies the same conditions as in the binary case. We assume that player i’s utility
is zero otherwise. This is consistent with our assumptions in case of matroid structures
as player i has zero utility if xi = 0 and utility wi(b) if xi = 1.

Polymatroid optimization. We assume that the feasible vectors form a polymatroid. That
is, a vector x ∈ X is feasible if

∑
i∈S xi ≤ g(S) for all S ⊆ N , where g is an integer-

valued submodular function. A function g is submodular if g(S ∩T ) + g(S ∪T ) ≤ g(S) +
g(T ) for all S, T ⊆ N .

Our goal is to compute a maximal feasible vector x ∈ X that has maximal welfare.
We refer to a mechanism that computes such a vector as optimizing.

Many practical problems have polymatroid structure (see, e.g., Section 5 of
[Bikhchandani et al. 2011]). We use the following two problems as running examples,
where our uniqueness proof extends to the second example but not to the first one:

— In a sponsored search auction [Goel et al. 2012] n advertisers must be assigned
clicks coming from k slots. Slot j receives αj clicks, and slots are sorted such that
α1 ≥ α2 ≥ · · · ≥ αk. An allocation of clicks x is feasible if and only if

∑
i∈S xi ≤

g(S) =
∑|S|
j=1 αj for all subsets of advertisers S. It is easy to verify that the function

g is submodular.
— In a Bertrand network [Babaioff et al. 2013] n firms have access to different mar-

kets having different sizes. The market structure is given by an undirected network
G = (V,E), where each node u represents a firm, self edges (u, u) represent cap-
tive markets, and all other edges (u, v) represent shared markets. An allocation of
buyers x is feasible if and only if

∑
i∈S xi ≤ g(S) =

∑
e=(u,v):u∈S∨v∈S size(e) for all

subsets of firms S. It is again easy to verify that g is submodular.

Solution concept. As before we assume that players act strategically, and analyze be-
havior in correlated equilibria.

4.2. Counterexamples
It turns out that our uniqueness results for matroids do not carry over to polymatroids;
even in the simple case in which the mechanism uses first-price payments and the
utilities are quasi linear.

A first—and relatively simple—observation is that correlated equilibria no longer
coincide with a socially optimal solution even though the mechanism is optimizing.
To see this consider a sponsored search auction with two advertisers and two slots.
The first advertiser has a value of 1 and the second advertiser has a value of 1/2.
Suppose that ties are broken in favor of the first advertiser. The first slot receives 2
clicks and the second slot receives 1 click. The socially optimal solution would be to
assign advertiser 1 to slot 1 and advertiser 2 to slot 2. An inefficient mixed Nash (and
hence correlated) equilibrium has the advertisers bid b1, b2 ∈ [0, 1/4] such that the
cumulative distribution of bids is

F1(b1) =
b1

1/2− b1
and F2(b2) =

1/2 + b2
1− b2

.



In fact, a slightly more complicated example shows that correlated equilibria need not
be unique. For example, in Section 6.5 of their paper Babaioff et al. [2013] describe
a Bertrand network. As they outline in Appendix A.4 of their paper, there are two
distinct mixed Nash (and hence correlated) equilibria.

It is vital to these counter examples that the players are confronted with a trade-
off: They can choose to take a safe strategy, securing them some fraction at a “cheap
price”, or they can decide for a more offensive strategy, competing for a larger share.
Indeed we will show that it is this trade-off that prevents the uniqueness results that
we obtained for the matroid setting.

4.3. Uniqueness Results
We will show that the uniqueness results for matroids carry over to polymatroids if
each player’s competition is homogeneous:3 Fix some player i ∈ N and for a < θi con-
sider the polymatroid restricted to players of type at least a. Then one of the following
conditions is fulfilled:

— There is a basis x with xi = 0.
— For every basis x, the value of xi is identical.

The key step in the proof of the more general uniqueness results is the following
lemma which generalizes Lemma 3.1 from matroids to polymatroids with homoge-
neous competition. The lemma naturally leads to generalizations of Theorem 3.2 and
Theorem 3.3, which we prove in the full version.

LEMMA 4.1. Given a polymatroid with homogeneous competition, let i ∈ N be some
arbitrary player and let bi < θi. If there is a basis x of the polymatroid restricted to
players of type at least bi with xi = 0, then i never wins anything with bid bi.

PROOF. To show the claim, we reduce the polymatroid to a matroid using the trans-
formation described by Schrijver [2002, Section 44.6b]. This way, from a polymatroid in
n dimensions, we get a matroid of nk elements, where each agent controls k elements.
That is, each agent i still only reports a single type bi ∈ Θi but this weight is applied
to all elements (i, `), ` ∈ [k], in this matroid.

In general, it is not possible to apply the proof of Lemma 3.1 to this matroid because
an agent controls multiple elements. However, as we will see, in this special case the
proof is still applicable.

So, again let the players be ordered such that θ1 ≤ θ2 ≤ . . . ≤ θn. For each m ∈ [n],
let Am ⊆ {m, . . . , n} be the set of players i such that there is a basis not containing any
element (i, `) of the matroid restricted to m, . . . , n. We claim that Pr[bi < θm, fi(b) >
0] = 0 for every i ∈ Am. Again, we proceed by induction on m. So let us assume the
statement has already been shown for some fixed m. Let B(x) ⊆ Θ be the set of bid
vectors b such that there is some i ∈ Am+1 with bi < x and fi(b). We will show that
Pr[b ∈ B(θm+1)] = 0.

We define the sequence (θm,t)t∈N exactly as stated in the proof of Lemma 3.1 with
the only difference that εt+1 = Ut+1

2nk+1 .
For a fixed bid vector b ∈ Θ, we consider for each agent i ∈ Am+1 the deviation

φ : Θi → Θi such that φ(θi) = θm,t+1 for θi ∈ [θm,0, θm,t+1] and φ(θi) = θi otherwise. Let
Gi = ui(φ(bi), b−i)− ui(b) be agent i’s gain in utility by this deviation.

3Note that matroids naturally fulfill this condition because as soon as there is no basis x with xi = 0, we
know that always xi = 1.



If b ∈ B(θm,t), we can again use the trivial bound
∑
i∈Am+1

Gi ≥ −nkDi, where
Di = maxθ∈Θ wi(θ) − minθ∈Θ wi(θ). Furthermore, if b 6∈ B(θm,t+1), then Gi = 0 for all
i ∈ Am+1

So, let us turn to the case that b ∈ B(θm,t+1) \ B(θm,t). By definition, there is an
i ∈ Am+1, winning with a bid bi ∈ [θm,t, θm,t+1). Let S1 ⊆ {m + 1, . . . , n} × [k] be the
corresponding basis of the matroid restricted to agents m + 1, . . . , n. There has to be
(i, `) ∈ S1 for some ` but we know that there is another basis of the restricted matroid
such that (i, `) 6∈ S2 for all `. Let us define S′1 = S1 \ {(i, `) | ` ∈ [k]}. By augmentation
property, there is an (j, `′) ∈ S2 \S′1 such that S′1∪{(j, `′)} is independent. We now have
Gj ≥ Ut+1 − εt+1 − (k − 1)2εt+1 and Gi′ ≥ −k2εt+1 for all i′ 6= j. That is,

∑
i∈Am+1

Gi ≥
Ut+1 − 2nkεt+1. So, we get

E

 ∑
i∈Am+1

Gi

 ≥ −nkDi Pr[b ∈ B(θm,t)] + (Ut+1 − 2nkεt+1) Pr[b ∈ B(θm,t+1) \B(θm,t)] .

By induction hypothesis Pr[b ∈ B(θm,t)] = 0. Furthermore, Ut+1 − 2nkεt+1 > 0 by
definition of εt+1 and E[Gi] ≤ 0 for all i ∈ Am+1 by equilibrium property. This means
that Pr[b ∈ B(θm,t+1) \B(θm,t)] = 0.

THEOREM 4.2. Given a polymatroid with homogeneous competition and social-
welfare maximizing basis xOPT . Then Pr[fi(b) = xOPTi ] = 1 for all i ∈ N .

PROOF. Let the players be ordered such that θ1 ≤ θ2 ≤ . . . ≤ θn. We show by com-
plete downward induction on i that fi(b) = xOPTi . In Lemma 4.1, we have already
shown that there is some j < i such that Pr[fi(b) = 0 | bi < θj ] = 1 and for any basis x
on the matroid restricted to j + 1, . . . , n the value xi is identical—in other words, it is
xOPTi . By the same arguments as used in the proof of Theorem 3.2, we now have that
Pr[fi(b) = xOPTi ] = 1.

THEOREM 4.3. Given a polymatroid with homogeneous competition and social-
welfare maximizing basis xOPT . Let i ∈ N be a player such that xOPTi > 0 and wi
is strictly increasing in bi. Furthermore, let j ∈ N , θj < θi, be the player maximizing θj
with the following property: There is a basis x of the polymatroid restricted to players
of type at most θj with xi = 0. Then Pr[bi ∈ [θj , θj + ε]] = 1 for all ε > 0.

PROOF. By homogeneous-competition property, for all bases x of the polymatroid
restricted to players of type at most θj , we know that xi = xOPTi . Furthermore, Theo-
rem 4.2 shows that Pr[fi(b) = xOPTi ] = 1. By the same considerations as applied when
proving Theorem 3.3, player i’s reports never exceed θj + ε for any ε because θj + ε

2
ensures winning the same amount at a higher utility.

4.4. Applications
An interesting case in which our uniqueness results for polymatroids applies are
Bertrand networks in which no firm has a captive market.

THEOREM 4.4. Bertrand networks without captive markets satisfy the homogene-
ity requirement of our uniqueness result. The results above imply that in the unique
correlated equilibrium all firms bid zero.

This theorem can be seen as a generalization and strengthening of the classic Bertrand
paradox for duopolies and pure Nash equilibria to a Bertrand paradox for networked
markets and correlated equilibria.
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E. Maskin and T. Sjöström. Chapter 5: Implementation theory. In A. S. K.J Arrow
and K. Suzumura, editors, Handbook of Social Choice and Welfare, Volume 1, pages
238–288, 2002.

P. Milgrom and J. Roberts. Rationalizability, learning and equilibrium in games with
strategic complementarities. Econometrica, 58:1255–1278, 1990.

P. Milgrom and I. Segal. Deferred-acceptance auctions and spectrum reallocation. In
Proceedings of the 15th Conference on Economics and Computation, 2014. To appear.

U. Nadav and G. Piliouras. No regret learning in oligopolies: Cournot vs. Bertrand.
In Proceedings of the 3rd Symposium on Algorithmic Game Theory, pages 300–311,
2010.

T. R. Palfrey. Chapter 61: Implementation theory. In R. Aumann and S. Hart, editors,
Handbook of Game Theory, Volume 3, pages 2273–2326, 2002.

C. H. Papadimitriou and T. Roughgarden. Computing correlated equilibria in multi-
player games. Journal of the ACM, 2008.

T. Roughgarden. Intrinsic robustness of the price of anarchy. In Proceedings of the 41st
Symposium on Theory of Computing, pages 513–522, 2009.

T. Roughgarden. The price of anarchy in games of incomplete information. In Proceed-
ings of the 13th Conference on Electronic Commerce, pages 862–879, 2012.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer Verlag,
2002.
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