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Designing double auctions is a complex problem, especially when there are restrictions on the sets of buyers

and sellers that may trade with one another. The goal of this paper is to develop “black-box reductions” from
double-auction design to the exhaustively-studied problem of designing single-sided mechanisms.

We consider several desirable properties of a double auction: feasibility, dominant-strategy incentive-
compability, the still stronger incentive constraints offered by a deferred-acceptance implementation, exact
and approximate welfare maximization, and budget-balance. For each of these properties, we identify suf-
ficient conditions on the two one-sided mechanisms — one for the buyers, one for the sellers — and on the
method of composition, that guarantee the desired property of the double auction.

Our framework also offers new insights into classic double-auction designs, such as the VCG and McAfee
auctions with unit-demand buyers and unit-supply sellers.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

Additional Key Words and Phrases: Trade Reduction Mechanism, Deferred-Acceptance Auctions

1. INTRODUCTION

Double auctions play an important role in mechanism design theory and practice. They
are of theoretical importance because they solve the fundamental problem of how to or-
ganize trade between a set of buyers and a set of sellers, when both the buyers and the
sellers act strategically. Important practical applications include the New York Stock
Exchange (NYSE), where buyers and sellers trade shares, and the upcoming spec-
trum auction conducted by the US Federal Communication Commission (FCC), which
aims at reallocating spectrum licences from TV broadcasters to mobile communication
providers. The idea of increasing economic efficiency by reallocating items from lower-
valued uses to higher-valued ones is reflected in both of these examples and is common
to many other double auction applications.
Designing double auctions can be a complex task, with several competing objectives.

Even in simple double auction settings with unit-demand buyers and unit-supply sell-
ers it is generally impossible to achieve economic efficiency and dominant strategy
incentive compatibility (DSIC) without running a deficit [Hurwicz 1972]. Myerson and
Satterthwaite [1983] extended this impossibility result to also include Bayes-Nash in-
centive compatible (BIC) mechanisms. Since then much of the literature on double
auctions has focused on trading-off efficiency, incentive compatibility and budget bal-
ance (BB) [e.g., McAfee 1992; Satterthwaite and Williams 1989; Rustichini et al. 1994;
Satterthwaite and Williams 2002].

Authors’ addresses: P. Dütting, T. Roughgarden and I. Talgam-Cohen, Department of Computer
Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA; email: {duetting, tim,

italgam}@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EC’14, June 8–12, 2014, Stanford, CA, USA. Copyright c© 2014 ACM 978-1-4503-2565-3/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600057.2602854



The complexity of double auction design grows when there are restrictions on the
sets of buyers and sellers that may trade with one another. Such restrictions can arise
from resource, policy or legal constraints. For example, a requirement for diversity
among the allocated buyers translates to a matroid constraint. Another example is
sellers whose production consumes a limited resource, which leads to a knapsack con-
straint. While the optimization problem associated with the former can be solved opti-
mally in polynomial time, the latter leads to an optimization problem that can only be
solved approximately in polynomial time.
Perhaps the cleanest approach to designing double auctions for complex settings is

via a “black-box reduction” to the exhaustively-studied problem of designing single-
sided mechanisms. The goal of this paper is to develop the theory that explains when
and how such black-box reductions work.
We consider several desirable properties of a double auction: feasibility, DSIC, the

still stronger incentive constraints offered by a deferred-acceptance implementation
such as weak group-strategyproofness (WGSP) [Milgrom and Segal 2014], exact and
approximate welfare maximization, and budget balance. For each of these properties,
we identify sufficient conditions on the two one-sided mechanisms — one for the buy-
ers, one for the sellers — and on the method of composition, that guarantee the desired
property of the double auction.

1.1. Our Approach—Double Auctions via Composition

Our modular approach applies to double auction settings with identical goods, unit-
demand buyers and unit-supply sellers, and a wide variety of constraints on which
buyers/sellers can be accepted for trade. It decomposes the design task into the tasks of
designing algorithms for each side of the market and a composition rule. All our results
are for greedy algorithms. The greedy algorithms each return a stream of players, and
the composition rule repeatedly queries these algorithms for the next buyer-seller pair,
and decides whether this pair should trade or not based on the bids/asks it has seen
so far. We distinguish between a forward and a backward way of implementing this: in
the forward way we irrevocably accept pairs, while in the backward way we irrevocably
reject pairs. In both cases we apply threshold payments.
This decomposition allows us to derive the properties of the resulting double auction

from the properties of the greedy algorithms and the composition rule. We establish
several composition results:

—Welfare composition theorem: This result relates the approximation guarantee of the
double auction to the approximation guarantees of the greedy algorithms and the
properties of the composition rule. We require that the approximation guarantees
are uniform, i.e., they hold for every cardinality, and that the greedy algorithms are
consistent, i.e., the players appear in the streams in order of their quality.

—DSIC composition theorem: A double auction that is based on composition is DSIC if
the greedy algorithms are rank monotone and consistent and the composition rule is
monotone. Rank monotonicity means that by improving their report, players can only
improve their position in the stream. Monotonicity means that if a pair is accepted
and they only improve their reports, they remain accepted.

—WGSP composition theorem: This result shows that if both greedy algorithms are
deferred-acceptance algorithms and the composition rule bases its decision only on
already rejected pairs — e.g., by accepting a pair only if it has already rejected a
pair with positive gain from trade — then their backward composition can again be
viewed as a deferred-acceptance algorithm and thus inherits the strong incentive
properties established in [Milgrom and Segal 2014].



—BB composition theorem: According to this result the backward composition of two
deferred-acceptance algorithms that only bases its decisions on previously rejected
pairs satisfies budget balance.

Our framework yields a simple and transparent method for designing DSIC double
auctions, and the first methodology known to date for designing double auctions with
incentive properties beyond DSIC. Despite its simplicity it is general enough to capture
the two landmark DSIC mechanisms — the Vickrey-Clarke-Groves (VCG) mechanism
and McAfee’s trade reduction mechanism — and it leads to previously unobserved
properties of these mechanisms.

1.2. A New Perspective on Well-Known Mechanisms

Even in the simplest case to which our framework applies — no constraints on which
buyers and sellers can be accepted for trade — it casts a new light on well-studied
double auction mechanisms:

—VCG mechanism via composition: Sort the buyers by value from high to low and the
sellers by cost from low to high. Go through the corresponding lists, and accept the
next buyer-seller pair if its gain from trade is positive. If we proceed like this we will
accept all pairs with positive gain from trade.

—McAfee’s trade reduction mechanism via composition Sort the buyers by value from
low to high and the sellers by cost from high to low. Go through the corresponding
list, and reject the next pair if among the already rejected pairs no pair has positive
gain from trade. This will lead to the rejection of only one pair with positive gain
from trade, namely the one with the lowest gain.

Our composition theorems now imply that VCG is DSIC and efficient, while trade
reduction is WGSP, BB and achieves welfare within 1 − 1/t∗ of the optimal welfare,
where t∗ is the number of trades in the optimal solution. To the best of our knowl-
edge the fact that trade reduction is WGSP has not been observed before. Another
remarkable consequence of our analysis is that trade reduction not only yields the
best-possible welfare approximation (in terms of t∗) subject to DSIC and BB, but also
subject to the sole requirement of WGSP.

1.3. Applying the Framework — Matroids and Beyond

Apart from these novel implications for already known mechanisms, our framework
is applicable to a wide range of feasibility-constrained environments. We assume that
the constraint across markets is that there are as many buyers as sellers, but allow
different feasibility constraints on either side of the market. For example:

—Matroid constraints: A concrete example are situations where policy considerations
require that the winning set of buyers in a double auction will not be dominated by
buyers of a certain type, as opposed to a more diversified group of buyers. Imbalance
of this form can be bounded by imposing a ceiling on the number of winning players
of each type, as in a partition matroid.

—Knapsack constraints: As an example consider the case where sellers are firms that
produce an identical good, but emit different levels of pollution, and there is a cap on
the overall pollution placed by the government.

—Matching constraints: This constraint arises, for example, when the seller side con-
sists of pairs of firms producing complimentary goods — for instance, almond butter
and quince jelly or wheels and trucks — and the buyer side wishes to buy the com-
pound product only. The winning seller pairs must then correspond to edges that
form a matching in the bipartite graph with firms as nodes, and edges indicating
willingness to work together.



Intuitively, the first setting is precisely the setting in which the greedy algorithm
that sorts elements by weight works optimally. The second setting can be thought of as
a relaxation of the matroid constraint, in which greedy by weight is not optimal but of-
ten performswell. What both settings have in common is that the greedy algorithm can
also be implemented as a deferred-acceptance algorithm. In the third setting greedy
by weight is still near optimal, but it is not clear how to implement it as a deferred-
acceptance algorithm. We show that a slightly more complicated deferred-acceptance
algorithm achieves the same approximation guarantee.
Our framework yields novel VCG and trade reduction-style mechanisms for all three

settings that are either DSIC or WGSP, respectively. It also translates the approxima-
tion guarantees for the greedy algorithms into welfare guarantees for the double auc-
tion. These guarantees show that the welfare degrades gracefully as we move away
from settings in which greedy is optimal.

1.4. Related Work

The design principle of modularity is embraced in a diverse range of complex de-
sign tasks, from mechanical systems through software design to building architecture
[Baldwin and Clark 2000]. Splitting a complex design task into parts or modules, ad-
dressing each module separately and combining the modules into a system helps make
the design and analysis tractable and robust. Economic mechanisms that operate in
complex incentive landscapes while balancing multiple objectives are natural candi-
dates for reaping the benefits of modularity. A notable predecessor of our work in this
regard is work by Mu’alem and Nisan [2008], which applies a modular design ap-
proach in the context of one-sided combinatorial auctions. They develop an array of
truthful algorithmic techniques, and demonstrate how different combinations of these
techniques are flexible enough to implement mechanisms for several cases of combina-
torial auctions with single-minded bidders.
A first line of related work on double auctions seeks to escape the impossibility re-

sults of Hurwicz [1972] and Myerson and Satterthwaite [1983], which show that no
double auction mechanism can simultaneously be efficient, DSIC or BIC, and BB by
relaxing the efficiency requirement. This direction can be divided into mechanisms
that are BIC and mechanisms that are DSIC. An important example of the former is
the buyer’s bid double auction of Satterthwaite and Williams [1989]; Rustichini et al.
[1994]; Satterthwaite and Williams [2002], which sets a single price so as to equal sup-
ply and demand. More recent work that falls into this category is [Cripps and Swinkels
2006; Fudenberg et al. 2007]. A prominent example of the latter is McAfee’s trade re-
duction mechanism, which disallows all but the least efficient trade. This mechanism
has been generalized to more complex settings in [Babaioff and Nisan 2004; Bredin
and Parkes 2005; Gonen et al. 2007; Babaioff et al. 2009; Chu 2009]. More recent work
that falls into this category is [Kojima and Yamashita 2013; Blumrosen and Dobzinski
2014] (the work of [Kojima and Yamashita 2013] applies to ex post incentive compat-
ibility as it addresses interdependent values). By Satterthwaite and Williams [2002],
the basic variant of the buyer’s bid double auction and the trade reduction mechanism
are optimal subject to BIC/DSIC and BB. Our work is orthogonal to these works as it
focuses on stronger incentives rather than BB, and complements this line of work with
the finding that trade reduction is optimal subject to WGSP.
The second line of related work on double auctions is initiated by Carroll [2013], who

analyzes the tradeoff between incentives and efficiency while insisting on budget bal-
ance. In his work he quantifies the degree to which a mechanism incentivizes truthful
reporting in terms of the ex post regret of a player, and relates it to the ex post wel-
fare loss of the mechanism — both in the worst case over all inputs. By weakening the
incentive properties, his work moves in the opposite direction than this work.



Our work also builds upon previous work on incentives in single-parameter mecha-
nism design problems. The classic result in this context is due to Myerson [1981] who
characterizes DSIC mechanisms as mechanisms that are monotone and apply thresh-
old payments. Although recent progress towards characterizing WGSP mechanisms
has been made [Juarez 2013], a similarly simple characterization for WGSP mecha-
nisms is not available. Deferred-acceptance algorithms on which part of our work is
based are proposed in [Milgrom and Segal 2014], and their performance is analyzed
in [Dütting et al. 2014]. Our work extends the deferred-acceptance framework from
one-sided settings to two-sided settings.

1.5. Paper Organization

Section 2 covers preliminaries of the settings to which our analysis applies, and for-
mally defines “output” properties of the double auction mechanisms we are interested
in, including incentive compatibility of different degrees (DSIC and WGSP), welfare
and BB; this section may be skipped by the expert reader. In Section 3 we describe
our composition framework: First we define the corresponding “input” properties of
the one-sided modules that are needed to guarantee the required output ones upon
composition; then we turn to properties of the composition itself.
The following sections are roughly organized by output property: Section 4 proves

the DSIC and WGSP composition theorems by analysis of the one-sided and composi-
tion properties that lead to these incentive guarantees; Section 5 has a similar analysis
leading to the welfare composition theorem, whose tightness is studied in Section 6.
Finally, in Section 7 we prove our BB composition theorem, as well as corresponding
lower bounds on the welfare achievable subject to DSIC and BB.

2. PROBLEM STATEMENT

In this section we formally define the double auction settings and the properties of
double auction mechanisms that we are interested in. We also present three settings
that will serve as running examples.

2.1. Double Auction Settings

We study single-parameter double auction settings: These are two-sided markets, with
n buyers on one side of the market and m sellers on the other. There is a single kind of
item for sale. The buyers each want to acquire a single unit of this item, and the sellers
each have a single unit to sell. Each buyer i has a value vi ≥ 0, and each seller j has
a cost cj ≥ 0. We denote by ~v (~c) the value profile (cost profile) of all buyers (sellers).
Players’ utilities are quasi-linear, i.e., buyer i’s utility from acquiring a unit at price pi
is vi−pi, and seller j’s utility from selling his unit for payment pj is pj−cj. The welfare
achieved by a set of buyers B and sellers S is the difference between the total value of
the min{|B|, |S|}-highest buyers and the total cost of the min{|B|, |S|}-lowest sellers.
A set of buyers and sellers is feasible if the set of buyers is feasible and the set of

sellers is feasible and there are at least as many sellers as there are buyers. Which
sets of buyers are feasible is expressed as a set system (N, IN ), where N is the set of
all n buyers, and IN ⊆ 2N is a non-empty collection of all the feasible buyer subsets.
Similarly, feasible seller sets are given as a set system (M, IM ), where M is the set of
all m sellers, and IM ⊆ 2M is a non-empty collection of all the feasible seller subsets.
The set systems that we consider are accessible, meaning that for every nonempty
feasible set, there exists an element of the set that we can remove such that it remains
feasible. An example of an accessible set system is a downward closed one, in which
for every nonempty feasible set, removing any element of the set results in another
feasible set. We assume that the two feasibility set systems are publicly known and
can be accessed via feasibility oracles.



2.2. Double Auction Mechanisms

We study direct and deterministic double auction mechanisms, which consist of an al-
location rule x(·, ·) and a payment rule p(·, ·). The allocation rule takes a pair of value
and cost profiles ~v,~c as input, and outputs the set of players who are accepted, or al-
located, for trade. For every buyer i (seller j), xi(~v,~c) (resp., xj(~v,~c)) indicates whether
he is allocated by the mechanism. The payment rule also takes a pair of value and
cost profiles ~v,~c as input, and computes payments that it charges the buyers and pays
to the sellers. We use pi(~v,~c) to denote the payment buyer i is charged, and pj(~v,~c) to
denote the payment seller j is paid. A buyer who is not accepted is charged 0 and a
seller who is not accepted is paid 0. The welfare a mechanism achieves is the welfare
of its set of accepted players.

Non-Strategic Properties. We study the following non-strategic properties of double auc-
tion mechanisms:

(1) Feasibility. A double auction mechanism is feasible if for every value and cost pro-
files ~v,~c, the set of accepted buyers and sellers is feasible. Formally, let B be the
set of accepted buyers and let S be the set of accepted sellers, then B ∈ IN , S ∈ IM
and |B| ≤ |S|.

(2) Budget balance (BB). A double auction mechanism is budget balanced if for every
value and cost profiles ~v,~c, the difference between the sum of payments charged
from the accepted buyers and the sum of payments paid to the accepted sellers is
non-negative.

(3) Efficiency. For δ ≥ 1, a double auction mechanism is δ-approximately efficient if for
every value and cost profiles ~v,~c, the welfare it achieves is at least a (1/δ)-fraction
of the optimal welfare.

Strategic Properties. We also study the following strategic properties of double auction
mechanisms:

(1) Individual rationality (IR). A double auction mechanism is IR if for every value
and cost profiles ~v,~c, every accepted buyer i is not charged more than his value vi,
and every accepted seller j is paid at least his cost cj . Non-accepted players are
charged/paid zero.

(2) Dominant strategy incentive compatible (DSIC). A double auction mechanism is
DSIC if for every value and cost profiles ~v,~c and for every i, j, v′i, c

′
j , it holds that

buyer i is (weakly) better off reporting his true value vi than any other value v′i,
and seller j is (weakly) better off reporting his true cost cj than any other cost c′j.
Formally,

xi(~v,~c)vi − pi(~v,~c) ≥ xi((v
′
i, v−i),~c)vi − pi((v

′
i, v−i),~c),

and similarly for seller j.
(3) Weak group-strategyproofness (WGSP). A double auction mechanism is WGSP if

for every value and cost profiles ~v,~c, for every set of buyers and sellers B ∪ S and
every alternative value and cost reports of these players v′B , c

′
S , there is at least

one player in B ∪ S who is (weakly) better off when the players report truthfully
as when they report v′B , c

′
S. The idea is that such a player does not have a positive

incentive to join the deviating group.1

1A stronger notion of group strategyproofness requires that no group of buyers and sellers can jointly deviate
to make some member of the group strictly better off while all other members are no worse off. This stronger
notion is violated, for example, if a seller’s cost sets the price for a buyer, because then the seller can claim
to have a lower cost which will lower the buyer’s payment.



The following characterization of DSIC and IR double auction mechanisms follows
from standard arguments.

PROPOSITION 2.1. A double auction mechanism is DSIC and IR if and only if:

(1) The allocation rule is monotone, i.e., for all value and cost profiles ~v,~c, every ac-
cepted buyer who raises his value remains accepted, and every accepted seller who
lowers his cost remains accepted.

(2) The payment rule applies threshold payments, i.e., every accepted buyer is charged
his threshold value — the lowest value he could have reported while remaining
accepted, and every accepted seller is paid his threshold cost — the highest cost he
could have reported while remaining accepted.

Note that threshold payments are sufficient to guarantee IR, and since all the mech-
anisms we consider apply threshold payments we can assume individual rationality
from now on.
A similarly simple characterization of WGSP and IR double auction mechanisms is

not available.2

2.3. Running Examples

Matroids. One possible structure of the feasible sets on either side of the market are
matroids. A set system (U, I) is a matroid if (1) ∅ ∈ I, (2) for all S ⊂ T ⊆ U : T ∈ I
implies S ∈ I (downward closed property), (3) if S, T ∈ I and |T | > |S|, then there
exists u ∈ T \ S such that S ∪ {u} ∈ I (exchange property). The set U is called the
ground set and the sets in I are called independent. A maximal independent set is
called a basis, and a minimal dependent set is called a circuit.

Knapsacks. Another possibility is knapsacks. In this case, the elements of the ground
set U have publicly-known sizes (s1, . . . , s|U|), and the family of feasible sets I includes
every subset S ⊆ U such that its total size

∑

i∈S si is at most the capacity C of the
knapsack. We denote the ratio between the size of the largest element and the size of
the knapsack by λ ≤ 1, and the ratio between the size of the smallest element and the
size of the largest element by µ ≤ 1.

Matchings. A third class of feasibility restrictions are bipartite matching constraints.
In this case the ground set U is the edge set of some bipartite graphG = (V, U), and the
family of feasible sets I are the subsets of the ground set that correspond to bipartite
matchings in this graph.

3. COMPOSITION FRAMEWORK

In this section we describe our framework for designing double auctions via composi-
tion. The framework includes one-sided algorithms and their composition; accordingly,
in order for the resulting double auctions to exhibit good properties, there are two
categories of required assumptions, one for the algorithms and the other for the com-
position. We discuss these in two separate sections: in Section 3.1 we define relevant
properties of the algorithms used on each side of the market, and in Section 3.2 we con-
sider different ways of composing these algorithms into double auction mechanisms.
As an example of how the framework works, suppose one cares about designing a

double auction with stronger incentives than DSIC. In Section 4 we study WGSP and
discover we need the assumptions of deferred-acceptance algorithms on both sides of
the market, and of using a composition of backward type and “lookback” composition

2For recent progress towards characterizing WGSP and BB mechanisms in the context of cost sharing mech-
anisms see Juarez [2013].



rule. These assumptions are described in Sections 3.1 and 3.2, respectively. They are
also relevant for other double auction properties, in this case BB.
In Section 3.3 we conclude by instantiating our framework for the running examples;

these also aim to help in parsing the abstract definitions.

3.1. Ranking Algorithms

The one-sided algorithms we use for our compositions are called ranking algorithms.
A ranking algorithm for buyers (sellers) is a deterministic algorithm that receives as
input a value profile ~v (cost profile ~c), and returns an ordered set of buyers (sellers),
which we refer to as a stream. Not all buyers (sellers) must appear in this stream,
e.g., for feasibility considerations (see below). The rank of a buyer (seller), denoted by
ri(~v) (rj(~c)), is his position in the stream (e.g., 1 if he appears first), or ∞ if he does
not appear in the stream. The streams of players will be traversed greedily, as per
our greedy approach. Accessing the next player in the stream is called querying the
algorithm. The history after k queries consists of the identities and values/costs of the
k queried players.

Feasibility. We distinguish between two natural feasibility requirements, based on the
feasibility set system of the relevant side of the market.

—A forward-feasible ranking algorithm returns a stream of players such that any
prefix of the stream is a feasible set.

—A backward-feasible ranking algorithm returns a stream of players such that there
is a minimal prefix of the stream which must be discarded to get a feasible set, and
such that discarding additional players maintains feasibility. We denote the rank of
the first player that does not have to be discarded by ℓ.

The semantic difference between forward-feasible and backward-feasible ranking
algorithms is that the former returns a stream of players who can be greedily accepted
for trade, while the latter returns a stream of players who can be greedily rejected.
This difference can affect the way in which we define the algorithms’ other properties,
as we now describe.

Consistency. A forward-feasible ranking algorithm is consistent if the players appear
in decreasing order of attractiveness, i.e., decreasing values for buyers and increasing
costs for sellers. A backward-feasible ranking algorithm is consistent if starting from
rank ℓ, the players appear in increasing order of attractiveness, i.e., increasing values
for buyers and decreasing costs for sellers.

Uniform Approximation. Fix a cardinality t. First consider the welfare-maximizing fea-
sible set of at most t players from each side of the market; denote their total value
by vOPT(t) for buyers, and total cost by cOPT(t) for sellers. Now for a forward-ranking
algorithm, let vALG(t) (cALG(t)) denote the total value (cost) achieved by greedily al-
locating to the first ≤ t buyers (sellers) in the feasible part of the output stream. For
a backward-ranking algorithm, the definitions are the same except that the last ≤ t
buyers or sellers in the feasible part of the output stream are considered.
Let α, β ≥ 1. A ranking algorithm for buyers is a uniform α-approximation if for

every value profile ~v and every t ≤ n, it holds that

vALG(t) ≥
1

α
· vOPT(t).

A ranking algorithm for sellers is a uniform β-approximation if for every cost profile ~c
and every t ≤ m, it holds that

cALG(t) ≤ β · cOPT(t).



That is, uniform approximation asserts that every feasible prefix/suffix output by the
ranking algorithms is near-optimal under the corresponding cardinality constraint.

Rank Monotonicity. A ranking algorithm is rank monotone if for every input and every
player, the rank of the player changes monotonically with his bid. More formally, con-
sider a forward-feasible ranking algorithm for buyers. The algorithm is rank monotone
if for every value profile ~v and buyer i,

v′i > vi =⇒ r′i ≤ ri,

where ri = ri(~v) is buyer i’s rank when he reports value vi, and r′i = ri((v
′
i, v−i)) is his

rank when he reports v′i. Similarly, a forward-feasible ranking algorithm for sellers is
rank monotone if for every ~c and seller j,

c′j > cj =⇒ r′j ≥ rj .

For a backward-feasible algorithm this implication is reversed.3

Deferred-Acceptance. The following definition is obtained by applying the deferred-
acceptance definition of Milgrom and Segal [2014] to ranking algorithms. We will use
it to generalize the trade reduction mechanism of McAfee, and in the composition the-
orems.
A deferred-acceptance ranking algorithm for buyers (sellers) is a backward-feasible

ranking algorithm that computes its output stream as follows. The algorithm main-
tains a set A of active buyers (sellers) — initially all buyers (sellers) — and at each
step until this set is empty:

—Scoring functions assign every active buyer (seller) i ∈ A a non-negative score
sAi (vi, v−A) (score sAi (ci, c−A)).

4 The scoring functions are weakly increasing in their
first argument.

—The buyer (seller) with the lowest (highest) score is added to the output stream and
removed from the set of active players A.

3.2. Composition of Ranking Algorithms

A composition between two ranking algorithms is a double auction mechanism, whose
allocation rule iteratively queries the ranking algorithms for the next buyer and next
seller, and decides whether to accept or reject them based on the current history, and
whose payment rule applies threshold payments. The decision whether to accept or
reject based on current history is called the composition rule.
We focus on two composition types — forward and backward — which give rise to

the trade exhaustion and trade reduction double auction families.

Forward Composition and Trade Exhaustion. A forward composition is a composition be-
tween two forward-feasible ranking algorithms, whose allocation rule operates as fol-
lows, given a composition rule and value and cost profiles ~v,~c:

(1) Query both ranking algorithms to form a buyer-seller pair (vi, cj); if one stream
runs out of players go to (3).

(2) Based on the bids/asks seen so far, use the composition rule to decide whether to
accept this buyer-seller pair and go to (1) or to go to (3).

(3) Stop, rejecting all remaining players.

3I.e., v′
i
> vi =⇒ r′

i
≥ ri and c′

j
> cj =⇒ r′

j
≤ rj .

4Note that a player’s score is a function of his own bid and the bids of the inactive players, and the scoring
function may depend on the set of active players. Importantly, the scoring function may not depend on the
bids of other active players.



OBSERVATION 3.1. Every double auction mechanism obtained from forward com-
position is feasible.

A composition rule is monotone if for each pair (vi, cj) that is accepted given history
h, it holds that every other pair (vi′ , cj′) with value vi′ ≥ vi and cost cj′ ≤ cj is also
accepted given any prefix h′ of history h.5 For example, a “t-threshold” composition
rule, which accepts a buyer-seller pair (vi, cj) if and only if their gain from trade vi− cj
exceeds t, is monotone.
A trade exhaustion mechanism is a forward composition of consistent, rank mono-

tone ranking algorithms that uses the 0-threshold composition rule.

Backward Composition and Trade Reduction. A backward composition is a composition
between two backward-feasible ranking algorithms, whose allocation rule operates as
follows, given a composition rule and value and cost profiles ~v,~c:

(0) Pre-processing: Query both ranking algorithms and reject players until the re-
maining sets B of buyers and S of sellers are feasible. Continue to reject players
from the long side of the market until |B| = |S|.

(1) Query both ranking algorithms to form a buyer-seller pair (vi, cj); if the streams
run out of players go to (3).

(2) Based on the bids/asks seen so far, use the composition rule to decide whether to
reject this buyer-seller pair and go to (1) or to go to (3).

(3) Stop, accepting all remaining players.

OBSERVATION 3.2. Every double auctionmechanism obtained from backward com-
position is feasible.

A lookback composition rule decides whether to accept or reject a buyer-seller pair
without taking into account their value and cost; it is only allowed to depend on the
values and costs of players previously queried in step (1) of the backward composition.
Note that the values and costs of players queried in the preprocessing step (0) are
not taken into account.6 For example, a particular lookback rule is the “rejected t-
threshold” composition rule, which accepts a buyer-seller pair (vi, cj) if and only if
there is a buyer-seller pair (vi′ , cj′) previously rejected in step (1), whose gain from
trade vi′ − cj′ exceeds t.
The trade reduction mechanism is a backward composition of consistent, deferred-

acceptance ranking algorithms that uses the rejected 0-threshold rule.

Remark 3.3. While trade reduction mechanisms are inherently based on backward
composition, it is possible to implement trade exhaustion mechanisms as forward or
backward compositions, in the sense that whether the implementation is forward or
backward is irrelevant for our composition theorems. The implication of a forward
versus backward implementation is that it dictates which ranking algorithms must be
used — forward-feasible or backward-feasible. In the applications we consider in this
paper, forward-feasible ranking is arguably more natural, and so we focus on trade
exhaustion based on forward composition.

3.3. Running Examples

We give a high-level description of ranking algorithms for our running examples, focus-
ing on the maximization (buyer-side) versions of the problems. A detailed description
appears in the full version of the paper.

5For a backward composition, this needs to hold for every history h′ such that h is a prefix of h′.
6Note that a lookback composition rule is trivially monotone as the decision in step (2) to start accepting
pairs only depends on previously seen pairs.



Matroids. The greedy algorithm for matroids sorts the elements of the ground set by
their weight, from highest to lowest, and then goes through the list of elements adding
the next element if its addition does not violate feasibility. It gives rise to a consistent,
rank monotone, and a uniform 1-approximation [Edmonds 1971].
It is not difficult to see that the order in which the elements are processed can be

turned around. For this go through the elements in reverse order, and reject an element
if it forms a circuit with a subset of the unrejected elements. In fact, this property is a
structural property of the active bidders (i.e., no knowledge of their bids is required).
The reverse greedy algorithm can therefore be implemented as a deferred-acceptance
algorithm.

Knapsacks. The standard greedy algorithm for knapsacks ranks elements by density,
which leads to a non-consistent rule. An alternative greedy algorithm, which is often
also a good heuristic, sorts the elements by their weight — from high to low — and
keeps adding elements to the knapsack as long as they fit into the knapsack. This is
clearly consistent and rank monotone. The standard argument for bounding the per-
formance of this algorithm relates its performance to the degree to which the knapsack
is filled and the degree by which it can be off from the weight density. A straightfor-
ward extension of this argument shows that for all cardinalities k its outcome is within
a factor of (1 − λ)µ of the optimal solution of cardinality k.
Again it is possible to reverse this greedy algorithm. For this we simply have to

go through the list of elements from low to high, and reject the next element if the
elements that are still to come do not fit in the knapsack. This backward greedy al-
gorithm has the same properties as the forward greedy algorithm. Since the “remain-
ing elements fit into the knapsack” property is again a structural property of the ac-
tive bidders alone (i.e., it does not depend on their bids), it can be implemented as a
deferred-acceptance algorithm.

Matchings. For bipartite matchings the greedy algorithm that sorts edges by their
weight, and accepts the next edge if none of its endpoints was previously added gives
rise to a consistent, rank monotone, uniform 2-approximation [Hassin and Rubinstein
2002]. This can be improved upon by computing a maximum weight matching of the
edge weights squared. The resulting algorithm is a consistent, rankmonotone, uniform√
2-approximation [Hassin and Rubinstein 2002].
Unfortunately, it is not clear how to reverse these algorithms — the obvious attempt

to traverse the elements in reverse order and to reject the next edge only if none of its
endpoints is covered by edges still to come fails miserably. It turns out that a different
approach that first grows a path of locally heaviest edges and then selects a subset
of these edges is a consistent, rank monotone, uniform 2-approximation that can be
implemented as a deferred-acceptance algorithm.

4. INCENTIVES

In this section we present a DSIC and a WGSP composition theorem. We then apply
these theorems to trade exhaustion and trade reduction.

4.1. DSIC Composition Theorem

Our composition theorem for DSIC applies equally well to forward and backward com-
position. One might suspect that monotonicity of all involved components — the com-
position rule and the ranking algorithms — is sufficient for DSIC, but an example
deferred to the full version of the paper shows that consistency is needed as well. It is
also shown in the full version that under a weak “no waste” assumption, rank mono-
tonicity is necessary for achieving a DSIC double auction.



THEOREM 4.1. A double auction that is obtained from forward composition of con-
sistent, rank monotone ranking algorithms for the buyers and the sellers using a mono-
tone composition rule is DSIC.

PROOF. We apply the characterization of DSIC double auctions in Proposition 2.1 to
show that the above composition is DSIC. The composition applies threshold payments
by definition, and so all we need to show is that its allocation rule is monotone. Fix
value and cost profiles ~v,~c. We show monotonicity by arguing that an accepted buyer
who raises his value remains accepted (a similar argument shows that an accepted
seller who lowers his cost remains accepted).
Denote the accepted buyer by i. Denote the seller with whom i trades by j. Let h be

the history when the composition rule is applied to (i, j). By rank monotonicity of the
buyer ranking algorithm, if i raises his value then his rank weakly decreases. Let j′

be the seller with which i is considered for trade after his rank decreases. Then c′j ≤ cj
by consistency of the seller ranking algorithm. Since the composition rule is monotone,
and the history h′ when it is applied to (i, j′) is a prefix of h, then the pair (i, j′) must
be accepted for trade as well.

4.2. WGSP Composition Theorem

Our WGSP composition theorem shows that the lookback composition of deferred-
acceptance ranking algorithms is WGSP. To prove this we show that the composition
can itself be implemented as a deferred-acceptance algorithm. The theorem then fol-
lows from the incentive properties of deferred-acceptance algorithms that Milgrom and
Segal [2014] establish.

THEOREM 4.2. A double auction that is obtained from backward composition of
deferred-acceptance ranking algorithms for the buyers and the sellers using a lookback
composition rule is WGSP.

The proof of this theorem, which is given in the full version of the paper, works by
compiling the scoring functions for the buyers and sellers, available from the deferred-
acceptance ranking algorithms, into a common scoring for all players; a deferred-
acceptance implementation of the composition then follows directly. The challenge is
in producing a valid scoring that implements the composition rule — as Section 6 will
imply, this is not possible for all composition rules, and the proof must therefore utilize
the properties of the lookback composition.
Moreover, we shall see that the proof must fully utilize the deferred-acceptance

framework of Milgrom and Segal [2014]. The common scoring will not depend only
on the player’s own report, but critically also on the reports of already rejected players.
This is in contrast to all deferred-acceptance algorithms we are aware of that precede
[Milgrom and Segal 2014] — consider for example the work of Bikhchandani et al.
[2011], as well as many other works cited therein.

4.3. Incentives of Trade Exhaustion and Trade Reduction

Two immediate corollaries of our composition theorems are incentive guarantees for
trade exhaustion and trade reduction.

COROLLARY 4.3. The trade exhaustion double auction is DSIC.

COROLLARY 4.4. The trade reduction double auction is WGSP.

Remark 4.5. Two further implications of our reduction are that the trade reduction
mechanism can be implemented as a clock auction (from Proposition 13 in [Milgrom
and Segal 2014]), and that there exists a Nash equilibrium of the trade reduction



mechanism with first price payments, in which the allocation and payments are iden-
tical to the DSIC outcome of the trade reduction mechanism with threshold payments
(from Proposition 20).

Remark 4.6. It should be noted that none of the stronger incentive properties of the
trade reduction mechanism are shared by the trade exhaustion mechanism: It is not
implementable as a clock auction, it is not weakly group-strategyproof, and there does
not always exist an outcome-equivalent Nash equilibrium in the corresponding first
price auction.

Remark 4.7. Milgrom and Segal also show additional incentive properties for a re-
stricted class of deferred-acceptance algorithms that are “non-bossy,” meaning that
players can only alter the set of accepted players if they change their own status from
accepted to rejected or vice versa. Trade reduction — through its dependence on re-
jected bids — violates non-bossiness: the buyer-seller pair that is prevented from trade
can misreport, claiming to have negative gain from trade, thus leading to the elimina-
tion of another buyer-seller pair that would otherwise have been accepted.

4.4. Running Examples

Our DSIC composition theorem and the corollary for trade exhaustion apply to all
forward algorithms discussed in Section 3.3. The WGSP composition theorem and the
corollary for trade reduction apply to all backward algorithms discussed in Section 3.3.

5. WELFARE

In this section we discuss the welfare guarantees of double auctionmechanisms arising
from compositions. We present a welfare composition theorem, and use it to derive
welfare guarantees for trade exhaustion and trade reduction.

5.1. Welfare Composition Theorem

The welfare composition theorem proves a bound that depends on the number of trades
t in the double auction, the number of trades t′ that would have maximized the gain
from trade in the double auction, and the number of trades t∗ in the optimal solution.
The number of trades t and t′ may differ e.g. as a result of trade reduction; t′ and t∗

may differ e.g. when the ranking algorithms are approximate.
As is standard with mixed-sign objective functions (c.f., [Roughgarden and Sun-

dararajan 2009]), the bound also depends on the optimal gain from trade via γ ≥ 1
which we define such that

vOPT(t
∗) = γ · cOPT(t

∗).

In the welfare-maximizing solution, the total value is certainly at least the cost; γ ≥ 1
is the factor by which it is bigger. Intuitively, the closer γ is to 1, the closer the optimal
welfare is to 0, and the harder it is to get a relative approximation of the optimal
welfare.

THEOREM 5.1. Consider a double auction that is obtained by composing consis-
tent ranking algorithms for the buyers and the sellers that are uniform α- and β-
approximations. Assume further that the composition rule only accepts buyer-seller
pairs (i, j) with vi − cj ≥ 0. Let t, t′, and t∗ as well as γ be defined as above. Then
for γ > αβ ≥ 1 we have

vALG(t)− cALG(t) ≥
t

t′
·

γ
α
− β

γ − 1
·
(

vOPT(t
∗)− cOPT(t

∗)
)

.



Note that if α = β = 1, then the second term on the right hand side of the inequality
vanishes. In this case the approximation factor is simply the fraction of optimal trades
made. The bound degrades gracefully from this ideal case in all relevant parameters.

PROOF. Since the double auction is composed of consistent ranking algorithms we
can number the buyers and sellers in the respective streams so that v1 ≥ v2 ≥ · · · ≥ vn
and c1 ≤ c2 ≤ · · · ≤ cm. Using this notation,

vALG(t)− cALG(t) =

t
∑

i=1

(vi − ci) and vALG(t
′)− cALG(t

′) =

t′
∑

i=1

(vi − ci).

Another implication of the fact that the double auction is composed of consistent
ranking algorithms is that the gain from trade is non-increasing. That is, i < j implies
vi − ci ≥ vj − cj . Hence for all s such that t < s ≤ t′ we have vs − cs ≤ 1

t

∑t
i=1

(vi − ci).
It follows that

vALG(t)− cALG(t) =

t′
∑

i=1

(vi − ci)−
t′
∑

i=t+1

(vi − ci)

≥
t′
∑

i=1

(vi − ci)− (t′ − t)
1

t

t
∑

i=1

(vi − ci)

=
(

vALG(t
′)− cALG(t

′)
)

−
(

t′

t
− 1

)

(

vALG(t)− cALG(t)
)

.

Rearranging this shows

vALG(t)− cALG(t) ≥
t

t′
(

vALG(t
′)− cALG(t

′)
)

. (1)

Next we use the fact that by the definition of t′ all trades up to and including t′ are
beneficial, while all subsequent trades yield a deficit. That is, vs − cs ≥ 0 for s ≤ t′ and
vs − cs < 0 for s > t′. Hence,

vALG(t
′)− cALG(t

′) ≥ vALG(t
∗)− cALG(t

∗). (2)

Finally, we use that the ranking algorithms are uniform α- and β-approximations
and the definition of γ to deduce that

vALG(t
∗)− cALG(t

∗) ≥ 1

α
vOPT(t

∗)− βcOPT(t
∗)

=
(γ

α
− β

)

cOPT(t
∗)

=
γ
α
− β

γ − 1

(

vOPT(t
∗)− cOPT(t

∗)
)

. (3)

To prove the claim it now suffices to combine inequality (1), inequality (2), and in-
equality (3).

5.2. Welfare of Trade Exhaustion and Trade Reduction

Next we use the general welfare composition theorem to derive welfare guarantees
for the trade exhaustion and trade reduction rules. The claimed bounds follow directly
from the observation that trade exhaustion makes all t′ possible trades, while trade
reduction makes exactly t′ − 1 trades. Note that it suffices to show the bound for γ > 1,
as for γ = 1 the optimal welfare is zero.



COROLLARY 5.2. Suppose γ > 1 and that the ranking algorithms used in the trade
exhaustion double auction are uniform α- and β-approximations. Then the approxima-
tion ratio is at least

γ
α
− β

γ − 1
.

COROLLARY 5.3. Suppose γ > 1 and that the ranking algorithms used in the trade
reduction double auction are uniform α- and β-approximations. Then the approxima-
tion ratio is at least

(

1− 1

t′

)( γ
α
− β

γ − 1

)

.

5.3. Running Examples

The greedy-by-weight algorithms for matroids and knapsacks as well as the three
algorithms for matchings discussed in Section 3.3 satisfy the conditions of the wel-
fare composition theorem and its corollaries. For matroids this means that there is a
welfare-maximizing DSIC trade exhaustion mechanism, and a (1 − 1/t∗)-approximate
WGSP trade reduction mechanism.

6. INCENTIVES AND WELFARE

In this section we investigate the interplay between incentives and welfare. We prove
a lower bound that applies to WGSP mechanisms, and an impossibility result for
mechanisms based on forward composition. The lower bound for WGSP mechanisms
shows that for settings in which consistent, uniformly optimal deferred-acceptance al-
gorithms are available, the trade reduction double auction based on these algorithms
is optimal subject to WGSP.

6.1. Lower Bound Subject to WGSP

Our lower bound for WGSP mechanisms applies to anonymous mechanisms; mecha-
nisms whose outcome does not change if the names of the players are permuted. Recall
that t∗ denotes the number of trades in the optimal solution.

THEOREM 6.1. No anonymous double auction mechanism that is WGSP can
achieve an approximation ratio strictly better than 1− 1

t∗
.

A simple observation is that the welfare-maximizing mechanism is not WGSP: Con-
sider a setting with one buyer with value v, and one seller with cost c. Since the buyer
has to win if and only if v ≥ c, it has to pay c. A similar argument for the seller shows
that it must be paid v. Now the buyer and seller can jointly deviate from truthful re-
ports v ≥ c to falsified reports v′ > v ≥ c > c′, which leads to a strict decrease/increase
of their payments to v′ and c′.
The proof of Theorem 6.1, which is given in the full version of the paper, is com-

plicated by the fact that it has to deal with approximation mechanisms and there is
typically more than one way to achieve a certain approximation guarantee. In fact, it
is not difficult to see that any approximation guarantee between 1 and 1− 1/t∗ can be
supported by a DSIC mechanism. Our lower bound shows that only the extreme point
1− 1/t∗ is also achievable by a WGSP mechanism.

6.2. Impossibility Result for Forward Composition

We now show an impossibility result — no double auction mechanism that is obtained
from forward composition can be WGSP and achieve an approximation ratio of 1−1/t∗.
In fact in the following proposition we prove a stronger impossibility result, which



shows that forward composition is particularly ill-equipped to achieve either WGSP
or budget balance while maintaining a non-trivial efficiency guarantee. The proof is
given in the full version of the paper.

PROPOSITION 6.2. For every DSIC double auction obtained from forward composi-
tion of consistent ranking algorithms, there are value and cost profiles such that one of
the following holds:

(1) The budget deficit is arbitrarily high and the mechanism is not WGSP.
(2) The welfare is arbitrarily smaller than the welfare achieved by the trade reduction

double auction.

7. BUDGET BALANCE

In this section we first establish that the trade reduction mechanism is BB. Previ-
ously, this was only known for the simple setting with no feasibility constraints other
than having an equal number of buyers and sellers. Afterwards we establish two lower
bounds on the welfare achievable by a DSIC and BB mechanism, one for the uncon-
strained setting which applies to all mechanism and on for the constrained setting
which applies to double auction mechanisms resulting from composition.

7.1. Budget Balance Composition Theorem

We begin by showing that the trade reduction double auction is BB. The proof exploits
a property of deferred-acceptance algorithms, namely that a winning player can only
alter the set of winning players by becoming a loser.

THEOREM 7.1. The trade reduction double auction is BB.

PROOF. The trade reduction double auction is composed of two backward-feasible
ranking algorithms. Rename the players such that the values ordered by rank are
(v1, . . . , vn) and the costs ordered by rank are (c1, . . . , cn). Let ℓB (ℓS) be the rank of the
first buyer (seller) who does not have to be rejected to obtain feasibility. Let ℓ′ be the
rank of the buyer-seller pair reduced by trade reduction. It holds that ℓ′ ≥ max{ℓB, ℓS}.
Our goal will be to show that the buyers accepted by the trade reduction double

auction pay at least the value vℓ′ . A symmetric argument shows that the accepted
sellers are paid at most the cost cℓ′ . This is sufficient to establish budget balance since
vℓ′ ≥ cℓ′ . Since the double auction uses threshold payments, it is enough to show that
any accepted buyer i > ℓ′ who lowers his value to v′i < vℓ′ will no longer be accepted.
Let r′ denote i’s rank after lowering his value to v′i. Assume first that r′ < ℓB. Since

the scores by which the deferred-acceptance algorithm ranks buyers depend only on
the buyers’ own values and on values of previously rejected buyers, the set of buyers
ranked 1 to r′ − 1 does not change following the decrease in i’s value. By definition of
ℓB, rejecting buyers 1 to r′ − 1 is not enough to make the remaining buyers a feasible
set, and so buyer i who is ranked r′ is necessarily rejected.
Now assume r′ ≥ ℓB. By consistency, buyers with rank at least ℓB are ranked in

increasing order of their values. This order is the same as before i’s value decreased,
except that i now appears before buyer ℓ′. Therefore, the buyer-seller pair i now belongs
to either has negative gain from trade or is reduced; in both cases buyer i is rejected.

7.2. Lower Bounds Subject to DSIC and BB

Our first theorem regarding optimality subject to DSIC and BB, whose proof is given
in the full version of the paper, gives a lower bound on the approximation ratio of
DSIC and BB double auctions; this lower bound is detail-free and complements lower
bounds on the welfare achievable by BIC and BB mechanisms in Bayesian settings
[Satterthwaite and Williams 2002].



THEOREM 7.2. No DSIC and BB double auction can achieve an approximation
ratio strictly better than 1− 1

t∗
.

Our second theorem, whose proof is again given in the full version of the paper, gives
a lower bound on the welfare achievable by a double auction resulting from composi-
tion imposing DSIC and BB.

THEOREM 7.3. Consider a double auction that is obtained by composing consistent,
rank monotone ranking algorithms for the buyers and the sellers, which are uniform α-
and β-approximations. Then subject to DSIC and BB, the approximation ratio of this
double auction cannot be better than

(

1− 1

t′

)( γ
α
− β

γ − 1

)

.

8. CONCLUSION

In this paper we proposed a modular approach to the design of double auctions that
decomposes the design task into the task of designing greedy algorithms for either side
of the market and a composition rule. Focusing on the unit-demand and unit-supply
case, we proved a number of composition theorems for (approximate) efficiency, DSIC
or WGSP, and BB that relate the properties of the double auction to the properties of
the modules used in its construction.
A challenging direction for future work is to extend our approach to even more com-

plex settings, such as:

—Settings with identical goods but multi-unit demand or multi-unit supply, say with
downward-sloping valuations or upward-sloping costs.

—Settings with non-identical goods in which each seller has a single good to sell and
either single-minded buyers or unit-demand buyers.
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