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It is desirable for an economic mechanism that its properties hold in a robust way across multiple equilibria
and under varying assumptions regarding the information available to the participants. In this paper we
focus on the design of position auctions and seek mechanisms that guarantee high revenue in every effi-
cient equilibrium under both complete and incomplete information. Our main result identifies a generalized
first-price auction with multi-dimensional bids as the only standard design capable of achieving this goal,
even though valuations are one-dimensional. The fact that expressiveness beyond the valuation space is
necessary for robustness provides an interesting counterpoint to previous work, which has highlighted the
benefits of simple bid spaces. From a technical perspective, our results are interesting because they estab-
lish equilibrium existence for a multi-dimensional bid space, where standard techniques for establishing
equilibrium existence break down.
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1. INTRODUCTION
We consider a standard position auction setting in which k positions are to be assigned
to n agents in a one-to-one fashion and agents agree on the relative values of the
positions. Such a setting can be described by two vectors v = (v1, . . . , vn) and β =
(β1, . . . , βk), where value vi is private to agent i and β is publicly known. The valuation
of agent i for position j is then given by βj · vi, and we will assume for convenience
that β1 ≥ β2 ≥ · · · ≥ βk. This is a one-dimensional setting, as the private information
of each agent consists of a single number. A prime example of position auctions can
be found in the context of sponsored search, where agents correspond to advertisers
and positions correspond to slots in which advertisements can be displayed. Each slot
comes with a click-through rate and each advertiser with a value per click.

In position auction settings, the same auction format is typically applied across very
different problem instances. Search engines for example use the same format to auc-
tion off both valuable, high frequency keywords and a vast number of keywords corre-
sponding to less frequent user queries. For high volume keywords it may be reasonable
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to consider a complete information model, where agents know one another’s value per
click. For less frequent keywords, on the other hand, an incomplete information model,
where an agent only has probabilistic beliefs about the values of others, seems more
appropriate. Naturally, an auction used for both high frequency and low frequency
keywords should possess appropriate strategic equilibria under both complete and in-
complete information.

In addition to equilibrium existence, auction designs are subject to a tradeoff among
various performance criteria. A goal that is shared by both the agents and the auction-
eer is the maximization of social welfare, i.e., of the sum of the agents’ valuations for
the positions they are assigned. For the agents this goal corresponds to an efficient use
of the available resources, for the auctioneer to the provision of a satisfactory service
to its customers. At the same time, the auctioneer also seeks to maximize its revenue,
i.e., the sum of the payments it receives from the agents.

We thus arrive at the following question:

Does there exist a position auction that possesses an efficient equilibrium
and achieves good revenue in every efficient equilibrium, under both com-
plete and incomplete information?

As a benchmark in both cases we adopt the revenue achieved in the truthful equi-
librium of the Vickrey-Clarke-Groves auction, henceforth termed the truthful VCG
revenue. This benchmark has been used previously in settings with complete informa-
tion [e.g., Lucier et al. 2012]. An alternative benchmark for settings with incomplete
information sacrifices efficiency [Myerson 1981], which seems inappropriate given our
focus on efficient equilibria. The truthful VCG revenue, on the other hand, is the max-
imum revenue achievable by any efficient mechanism [Myerson 1981].

Before we proceed any further, it is worth noting that revenue equivalence, which
states that equilibria resulting in the same allocation must also yield the same rev-
enue, is not enough to resolve the above question for either complete or incomplete in-
formation. Under complete information, revenue equivalence does not normally hold.
Under incomplete information, where it does apply, it does not guarantee existence of
an efficient equilibrium.

1.1. Candidate Auctions
We address the question by considering variants of the three designs commonly
used for position auctions: the Vickrey-Clarke-Groves (VCG) auction, the generalized
second-price (GSP) auction, and the generalized first-price (GFP) auction.1 For each of
these designs we distinguish between a simplified variant with one-dimensional bids
and an expressive variant with multi-dimensional bids:

— In the simplified variant each agent i specifies a single bid bi, and this bid is multi-
plied by β1 ≥ β2 ≥ · · · ≥ βk to obtain bids for the different positions.

— In the expressive variant each agent i submits a separate bid bi,j for each position j,
where we require bids to be non-increasing from position 1 to position k.

We further distinguish between two allocation rules: the first assigns positions to
agents so as to maximize social welfare with regard to the reported valuations; the
second considers each position in turn, from first to last, and greedily assigns it to
an agent with maximum bid for the position among those not previously assigned a
position. For simplified bids the greedy allocation rule also maximizes reported social
welfare, and hence the two allocation rules are equivalent. This equivalence does not

1Google and Microsoft use the GSP auction, Facebook the VCG auction. The GFP auction was used by
Overture, the first company to provide a successful sponsored search service.



Table I. Negative results for standard auction designs and focus of this work

bid space allocation rule VCG-based
payments

GSP-based
payments

GFP-based
payments

simplified efficient /
greedy

efficient low revenue
Nash equilibrium
[Dütting et al. 2011a]

efficient low revenue
Nash equilibrium
[Dütting et al. 2011a],
no Bayes-Nash equi-
librium [Gomes and
Sweeney 2009]

no Nash equilibrium
[Edelman et al. 2007]

expressive

efficient
efficient low revenue
Nash equilibrium
[Milgrom 2010]

efficient low revenue
Nash equilibrium
[Milgrom 2010]

greedy
efficient low revenue
Nash equilibrium
[Milgrom 2010]

efficient low revenue
Nash equilibrium
[Milgrom 2010]

this work

generally hold in the expressive case. Our main positive result is enabled by the greedy
allocation rule, while all negative results hold for both allocation rules.

Finally, for a given allocation rule, payments are defined as follows: the VCG auction
charges each agent the difference in social welfare of the other agents when the agent
is absent and when it is present, both with regard to reported valuations; the GSP
auction charges each agent the next-highest bid on the position it is assigned coming
from an agent that is not assigned a higher position; the GFP auction charges each
agent its bid on the position it is assigned.

1.2. Results
It turns out that most candidate auctions are disqualified by prior work, see Table I for
an overview. All variants of the VCG and GSP auctions—with simplified or expressive
bids, efficient or greedy allocation rule—have an efficient complete information equi-
librium with arbitrarily small revenue compared to the truthful VCG revenue [Mil-
grom 2010; Dütting et al. 2011a]. This result is rather robust, and continues to hold
for example when multipliers α 6= β are used [Dütting et al. 2011a]. An additional
disadvantage of the simplified GSP auction is that it may not have any (Bayes-Nash)
equilibrium when information is incomplete [Gomes and Sweeney 2009]. The simpli-
fied GFP auction, on the other hand, has a unique (Bayes-Nash) equilibrium under
incomplete information [Chawla and Hartline 2013], but may not have an equilibrium
under complete information [Edelman et al. 2007].

The only remaining candidate is the expressive GFP auction, and we show that the
variant with greedy allocation rule indeed possesses the desired robustness property:

— Under complete information it has at least one equilibrium, and all of its equilibria
are efficient and yield at least the truthful VCG revenue.

— Under incomplete information it has an efficient equilibrium, and every efficient
equilibrium yields the truthful VCG revenue.

A few comments are in order regarding our focus on efficient equilibria. Since coordi-
nation among agents is relatively straightforward under complete information, the ex-
istence of efficient complete information equilibria with low revenue, which see agents
coordinate to extract a larger share of the surplus, provides a rather strong argument
against the use of a particular design. In this sense, a restriction to efficient equilib-
ria only strengthens the negative results for the VCG and GSP auctions. At the same
time, our results for the expressive GFP auction rule out the possibility of low revenue
in any complete information equilibrium. Under incomplete information, coordination
among agents seems more difficult and hence less likely, especially if there exists a



natural efficient equilibrium. The incomplete information equilibrium we identify for
the expressive GFP auction can be reached via so-called target-profit strategies [e.g.,
Bernheim and Whinston 1986]. It has been argued that their conceptual simplicity
makes these strategies a very natural candidate for adoption in the absence of domi-
nant strategies [Milgrom 2004].

In summary, our results identify an expressive auction with first-price payments as
the only standard design capable of providing the desired robustness property across
complete and incomplete information environments. That expressiveness is in this
sense necessary for robustness provides an interesting counterpoint to previous work
on position auctions, which has highlighted the benefits of simplicity [Milgrom 2010;
Dütting et al. 2011a].

1.3. Techniques
Our analysis of the complete information case is technically similar to the classic anal-
ysis of Bernheim and Whinston [1986] that links equilibria of first-price auctions to
the core, and to more recent approaches that also make this connection [Day and Mil-
grom 2008; Hoy et al. 2013]. The common feature is the use of target-profit strategies.
Specifically, we show that having each agent i bid its value βj · vi for position j minus
its utility ui in the truthful equilibrium of the VCG auction, or zero if this difference is
negative, yields an efficient equilibrium. By construction, revenue in this equilibrium
equals the truthful VCG revenue. We then exclude the possibility of inefficient equilib-
ria by showing how inefficiencies in the allocation lead to opportunities for beneficial
unilateral deviation. To establish the revenue guarantee for efficient equilibria, we
consider certain unilateral deviations from the proposed efficient equilibrium, and use
the fact that these deviations cannot be beneficial to derive lower bounds on payments
in equilibrium.

In the incomplete information setting, the combination of one-dimensional valu-
ations and multi-dimensional bids poses two fundamental challenges. First, Myer-
son’s [1981] classic equilibrium characterization only provides a necessary, but not a
sufficient condition: it tells us that payments in every efficient equilibrium must equal
those in the truthful equilibrium of the VCG auction. Since bids are multi-dimensional,
there are many different bids that satisfy the condition and thus many candidate equi-
librium bids. Second, the standard technique to verify that a particular candidate is
an equilibrium involves integrating the derivative of an agent’s utility, as a function of
both valuation and bid, along a path between two bids. This technique breaks down in
our setting, where the bid space has higher dimension than the valuation space and
the utility function may not be defined everywhere on the path.

In the candidate equilibrium we consider, agent i’s bid on position j equals its ex-
pected truthful VCG payment conditioned on being allocated position j. Like their
counterparts under complete information, the bids in the incomplete information set-
ting thus have an interpretation as target-profit strategies. To prove that they form
an equilibrium we carry out an induction from the last position to the first, and show
that the conjectured equilibrium bid on position j is optimal for agent i, given that the
other agents bid according to the conjectured equilibrium and agent i bids according
to the conjectured equilibrium on positions j + 1 to k. We believe that similar tech-
niques could be used to show equilibrium existence in more general settings, including
settings with multi-dimensional valuations.

1.4. Related Work
The design of expressive auctions for specific applications is an important topic of con-
temporary mechanism design [e.g., Aggarwal et al. 2009; Ghosh and Sayedi 2010; Con-
stantin et al. 2011; Dütting et al. 2011b; Dobzinski et al. 2012; Dütting et al. 2012; Goel



et al. 2012]. The intuition that expressiveness is generally desirable is supported by
work of Benisch et al. [2008], who showed that the maximum social welfare a mecha-
nism can achieve strictly increases with a measure of expressiveness based on a con-
cept from computational learning theory.

The classic analysis of position auctions is due to Varian [2007] and Edelman et al.
[2007]. Working under the assumption that agents have complete information, these
authors showed that the GSP auction—although not truthful—has certain desirable
equilibria, in which the revenue is at least as high as in the truthful equilibrium of the
VCG auction. For incomplete information environments, Gomes and Sweeney [2009]
showed that the GSP auction may not possess an efficient equilibrium. The GFP auc-
tion always has a unique, efficient (Bayes-Nash) equilibrium under incomplete infor-
mation, which yields the truthful VCG revenue [Chawla and Hartline 2013], but may
not have a (Nash) equilibrium under complete information [Edelman et al. 2007]. Our
analysis differs from these earlier results in its use of an expressive bidding language,
which overcomes the negative result for complete information settings. In a series of
papers, Paes Leme and Tardos [2010], Lucier and Paes Leme [2011], Caragiannis et al.
[2011], and Syrgkanis and Tardos [2013] showed that the GSP auction has a small con-
stant price of anarchy under both complete and incomplete information.2 Lucier et al.
[2012] and Caragiannis et al. [2012] showed that the revenue of the GSP auction can be
arbitrarily small compared to the truthful VCG revenue under complete information,
but under incomplete information always is within a constant factor of the optimal
revenue of Myerson [1981] when reserve prices are chosen appropriately.

The role of expressiveness in position auction environments was highlighted by Mil-
grom [2010] and Dütting et al. [2011a], who considered VCG and GSP auctions under
complete information and argued that a restriction of the bidding space to a subspace
of the valuation space can rule out zero revenue equilibria without introducing new
and potentially bad ones. Also in a complete information setting and for VCG and GSP
auctions, Blumrosen et al. [2008] and Abrams et al. [2009] bounded the reduction in
equilibrium quality resulting from a restriction of the bidding space to a subspace of
the valuation space.

Independently from our work, Hoy et al. [2013] argued in favor of an expressive de-
sign for first-price auctions in complete information environments. The authors used
target-profit strategies to establish the existence of an efficient complete information
equilibrium that yields the truthful VCG revenue. They also showed that every coop-
eratively envy-free outcome—a strengthening of the envy-freeness concept from indi-
vidual bidders to groups of bidders—is efficient and yields the truthful VCG revenue.
Like the original envy-freeness concept, cooperative envy-freeness leaves the standard
equilibrium framework. Our results regarding efficiency of equilibria and revenue in
efficient complete information equilibria strengthen these results for position auctions
from cooperatively envy-free equilibria to Nash equilibria. In addition we also consider
incomplete information settings, requiring that the same design has robust perfor-
mance under both complete and incomplete information. In performing our analysis,
we successfully apply the notion of target-profit strategies to an incomplete informa-
tion setting. Lifting this concept from complete to incomplete information had been an
open problem since its introduction by Bernheim and Whinston [1986].

To the best of our knowledge, the study of position auctions that admit efficient
equilibria and yield high revenue in every efficient equilibrium under both complete

2The price of anarchy compares the minimum social welfare in any equilibrium to the maximum social
welfare of any outcome. That greedy algorithms can achieve a small price of anarchy, potentially smaller
than that of an efficiently computable outcome, was previously highlighted by Gairing [2009] in the context
of covering games.



and incomplete information, and the use of additional expressiveness to achieve this
goal, are also novel to the present work.

2. PRELIMINARIES
We study a setting with a set {1, . . . , k} of positions ordered by quality and a set
N = {1, . . . , n} of agents with unit demand and one-dimensional valuations for the
positions. More formally, write Rk≥ = {x ∈ Rk : xj > 0, xj ≥ xj′ if j < j′} for the set of
k-dimensional vectors whose entries are positive and non-increasing. For β ∈ Rk≥, let
Rkβ = {x ∈ Rk : x = βv, v ∈ R+} be the one-dimensional subspace of Rk spanned by β.
Agent i’s valuation can then be represented by a vector βvi ∈ Rkβ in this subspace, such
that βjvi ≥ 0 is the agent’s value for position j. We assume that vector β is common
knowledge among the agents. Our goal is to assign the positions to agents in order to
maximize total value or social welfare. An assignment of agents to positions satisfying
this property is commonly called efficient.

The VCG auction solicits a single-dimensional bid bi ∈ R+ from each agent i ∈ N .
This bid is then extended to a k-dimensional bid by multiplying it with vector β. Agent
i’s bid on position j is thus βjvi. The allocation is chosen so as to maximize the reported
social welfare, i.e., the sum of the bids. The payment of agent i is the amount by which
its presence reduces the social welfare of the other agents with regard to their bids.

The expressive GFP auction solicits a vector bi ∈ Rk≥ of bids from each agent i ∈ N ,
where bi,j is interpreted as agent i’s bid on position j. The allocation is computed in a
greedy manner by going through positions 1 to k, and assigning the current position
to an agent with maximum bid on that position among the agents not yet assigned a
higher position. The payment of an agent i assigned position j is its bid bi,j on this
position.

We assume quasi-linear utilities, such that the utility ui(b, vi) of agent iwith value vi,
in a given auction and for a given bid profile b = (b1, . . . , bn), is equal to its valuation
for the position it is assigned minus its payment for that position. To be able to rea-
son about strategic behavior we further need to specify what agents know about one
another’s valuations.

In the complete information setting, the values vi are common knowledge among the
agents. A bid profile (b1, . . . , bn) is a Nash equilibrium of an auction if no agent has an
incentive to change its bid assuming that the other agents don’t change their bids, i.e.,
if for every i ∈ N and every b′i,

ui((b1, . . . , bi, . . . , bn), vi) ≥ ui((b1, . . . , b′i, . . . , bn), vi).

In the incomplete information setting, values vi are drawn independently from a
distribution F with density f and support [0, v̄] for some finite v̄ ∈ R+. Distribution F
is assumed to be common knowledge among the agents. A profile (b1, . . . , bn) of bidding
functions then is a Bayes-Nash equilibrium if no agent has an incentive to change its
bidding function assuming that the values of the other agents are drawn from F , i.e.,
if for every i ∈ N , every vi ∈ [0, v̄], and every bidding function b′i,

Evj∼F,j 6=i
[
ui
(
(b1(v1), . . . , bi−1(vi−1), bi(vi), bi+1(vi+1), . . . , bn(vn)), vi

)]
≥

Evj∼F,j 6=i
[
ui
(
(b1(v1), . . . , bi−1(vi−1), b′i(vi), bi+1(vi+1), . . . , bn(vn)), vi

)]
.

Because our environment is one-dimensional we can appeal to Myerson’s character-
ization of the expected payments in a Bayes-Nash equilibrium.

THEOREM 2.1 (MYERSON [1981]). Consider a position auction, and assume that
agents use bidding functions such that agent i with valuation vi is assigned position



s with probability P is(vi). Then the bidding functions are a Bayes-Nash equilibrium of
the auction only if, for every agent i,

(1) the expected allocation
∑k
s=1 P

i
s(vi)βs is non-decreasing in vi and

(2) the expected payment is

pi(vi) =

k∑
s=1

P is(vi)βsvi −
∫ vi

z=0

k∑
s=1

P is(z)βs dz,

where pi(0) = 0.

Since an efficient allocation satisfies Condition 1, monotonicity, we have the follow-
ing corollary.

COROLLARY 2.2. In an efficient Bayes-Nash equilibrium of any position auction,
the expected payment of every agent i is equal, for every value vi, to the expected payment
of the agent in the truthful equilibrium of the VCG auction.

3. COMPLETE INFORMATION
We begin our analysis of the expressive GFP auction for settings with complete infor-
mation. We show that it always has a Nash equilibrium, that all its Nash equilibria
are efficient, and that payments in every Nash equilibrium are at least the truthful
VCG payments.

The first result is proved by showing that the bid profile where the bid of agent i
on position j equals its value βj · vi minus its truthful VCG utility ui, or zero if this
difference is negative, constitutes a Nash equilibrium. To establish the second result
we argue that any inefficiency in the allocation leads to an opportunity for unilateral
deviation. For the third result we use the fact that no beneficial unilateral deviations
exist in a Nash equilibrium to derive lower bounds on payments.3

THEOREM 3.1. Assume that agent valuations in a position auction on k positions
are in subspace Rkβ of Rk, for β ∈ Rk≥. Then,

(1) the expressive GFP auction has an efficient Nash equilibrium with payments equal
to the truthful VCG payments,

(2) every Nash equilibrium of the expressive GFP auction is efficient, and
(3) the payments in every Nash equilibrium of the expressive GFP auction are at least

the truthful VCG payments.

PROOF. We prove the claims one by one.
For the first claim, consider without loss of generality the case where agents are

ordered by decreasing value, such that v1 ≥ v2 ≥ · · · ≥ vn, and the efficient allocation
where agent i is assigned position i, for 1 ≤ i ≤ k. Denote by ui the truthful VCG
utility of agent i, for 1 ≤ i ≤ n, and by pi the truthful VCG payment for position i, for
1 ≤ i ≤ k. Then ui = βivi − pi for 1 ≤ i ≤ k and ui = 0 for i > k. We further claim that
the bid profile b ∈ (Rk≥)n with

bi,j = max(βjvi − ui, 0)

for i = 1, . . . , n and j = 1, . . . , k is an equilibrium of the GFP auction that is efficient
and yields the truthful VCG payments.

3An alternative proof could use the connections between the VCG outcome and Walrasian equilibria [Gul
and Stacchetti 1999] and between Walrasian equilibria and equilibria of expressive first-price auctions [Has-
sidim et al. 2011]. Our proof from first principles has the advantage that it makes the role of target-profit
strategies explicit.



Under this bid profile, an efficient allocation assigns position i to agent i at price pi.
With the greedy allocation rule, this outcome can be obtained by letting agent i point
to position i and breaking ties in favor of the agent that points to a given position. To
see that b is indeed an equilibrium first observe that agent i cannot decrease its bid for
position i without being assigned a position other than i. Now assume for contradiction
that agent i has a beneficial deviation to a position j 6= i, such that

βivi − pi < βjvi − pj − ε,
for every ε > 0. Here we use that agent i can bid pj + ε on positions j and above
to win one of these positions, and that it values each of them at least as highly as
position j. The left-hand side of this inequality equals the utility of agent i in the
truthful equilibrium of the VCG auction, whereas the right-hand side equals the utility
agent i would get if it was instead assigned position j at price pj + ε. The inequality
contradicts the fact that the truthful VCG equilibrium is envy-free.

For the second claim, consider a Nash equilibrium b = (b1, . . . , bn) and assume for
contradiction that it leads to an inefficient assignment. Then there exist agents i, j
with vi > vj such that agent i is assigned position s and agent j is assigned position
t < s.

First assume that agent i bids bj,t + ε on positions t and above, which means that it
wins one of these positions. Since b is an equilibrium this deviation is not beneficial,
i.e., for every ε > 0,

βsvi − bi,s ≥ βtvi − bj,t − ε. (1)

Now consider the situation where agent j bids according to bid vector b′j with

b′j,` =

{
bi,s + ε if 1 ≤ ` ≤ s
0 otherwise

for some ε > 0. We claim that with these bids agent j will either be assigned a position
above s, or will compete for position s with bids that are at most bi,s and will therefore
be assigned position s. For the latter observe that agents other than j who are assigned
a position above s when agent j bids according to bj can only be assigned a higher
position when agent j bids according to b′j . This suffices because agents other than j
who were assigned position s or below bid at most bi,s on position s.

Since b is an equilibrium, agent j does not benefit from bidding according to b′j , and
thus for every ε > 0,

βtvj − bj,t ≥ βsvj − bi,s − ε. (2)

By adding (1) and (2) and rearranging,

βsvi + βtvj ≥ βsvj + βtvi − 2ε

and thus

vj ≥ vi −
2ε

βt − βs
for every ε > 0. This contradicts the assumption that vi > vj .

For the third claim, consider a Nash equilibrium b = (b1, . . . , bn) and assume without
loss of generality that it leads to an assignment where agent i is assigned position i for
i = 1, . . . , k. Further assume that the assignment is efficient, i.e., that v1 ≥ v2 ≥ · · · ≥
vk. For 1 ≤ i ≤ k, agent i+ 1 does not benefit from bidding bi,i + ε = pi + ε on position i
and above, so

βi+1vi+1 − pi+1 ≥ βivi+1 − pi − ε



for every ε > 0. Thus, for every ε > 0,

pk ≥ βkvk+1 − ε and
pi ≥ (βi − βi+1)vi+1 + pi+1 − ε for 1 ≤ i < k,

which proves the claim.

4. INCOMPLETE INFORMATION
We now consider environments with incomplete information and show our main result,
that the expressive GFP auction always has an efficient equilibrium that yields the
truthful VCG revenue.

THEOREM 4.1. Assume that agent valuations in a position auction on k positions
are drawn independently from a continuous distribution on Rkβ with bounded support.
Then the expressive GFP auction has an efficient Bayes-Nash equilibrium with the same
payments as the truthful equilibrium of the VCG auction.

We prove this result by constructing a bidding function b∗ : R → Rk≥, and showing
by induction that an agent maximizes its utility by bidding according to b∗, assuming
that all other agents bid according to b∗ as well. To this end, we define in Section 4.1 a
function b∗j : R→ R for each position j that maps a valuation v to the expected truthful
VCG payment b∗j (v) an agent with valuation v would face if it was allocated position j.
The equilibrium bidding function b∗ will then be given by b∗(v) = (b∗1(v), . . . , b∗k(v)). We
will say that an agent with valuation v bids truthfully on position j (according to b∗)
if it bids b∗j (v), and that it bids truthfully if it bids truthfully on all positions. The
property we show by induction is that independently of the agent’s bids on positions
1, . . . , j − 1 and assuming truthful bids on positions j + 1, . . . , k, it is optimal to bid
truthfully on position j. For this we apply the standard technique, and integrate the
derivative of the utility function from the truthful bid on position j to a conjectured
beneficial deviation on position j to derive a contradiction.

Denote by u∗((x1, . . . , xk), v) the expected utility of an agent with valuation v who
bids b∗j (xj) on position j, for 1 ≤ j ≤ k, while all other agents bid truthfully. The proof
of Theorem 4.1 uses two lemmata, which we respectively prove in Sections 4.2 and 4.3.

LEMMA 4.2. Fix a particular agent and a position j. Assume that all other agents
bid truthfully and that the agent bids truthfully on positions j + 1, . . . , k. Then the
derivative of the agent’s expected utility with respect to the bid on position j vanishes at
the truthful bid, i.e.,

d

dxj
u∗((x1, . . . , xj , v, . . . , v), v)

∣∣∣
xj=v

= 0.

LEMMA 4.3. Fix a particular agent and a position j. Assume that all other agents
bid truthfully and that the agent bids truthfully on positions j + 1, . . . , k. Then, the
derivative in the valuation of the derivative in the bid on position j of the agent’s ex-
pected utility is non-negative, i.e.,

d

dv

d

dxj
u∗((x1, . . . , xj , v, . . . , v), v) ≥ 0.

Using the lemmata we prove our main theorem.

PROOF OF THEOREM 4.1. Fix a particular agent and assume that all other agents
bid truthfully. Suppose that we have established the claim for positions j + 1, . . . , k,
and that we want to establish it for position j. The claim trivially holds for j = k, so



we know from the induction hypothesis that

u∗(x1, . . . , xj , v, . . . , v) = max
{
xj+1, . . . , xk : u∗(x1, . . . , xj , xj+1, . . . , xk)

}
.

To show that the claim holds for position j, assume for contradiction that there exists
v′ ∈ R≥0 such that

u∗(x1, . . . , xj−1, v
′, v, . . . , v) > u∗(x1, . . . , xj−1, v, v, . . . , v).

First consider the case where v′ < v. Then,

u∗((x1, . . . , xj−1, v, . . . , v), v)− u∗((x1, . . . , xj−1, v′, v, . . . , v), v) =∫ v

v′

d

dxj
u∗((x1, . . . , xj−1, xj , v, . . . , v), v) dxj ≥∫ v

v′

d

dy
u∗((x1, . . . , xj−1, y, xj , . . . , xj), xj)

∣∣∣
y=xj

dxj = 0,

where the inequality and the last equality respectively hold by Lemma 4.3 and
Lemma 4.2. This is a contradiction.

If v′ > v, we can proceed analogously to show that the deviation is not beneficial.
Note that when all other agents bid according to b∗, it is enough to consider bids b∗j (v)
with v in the support of F . Any other bid will be dominated by a bid of this type.

4.1. Truthful VCG Payments and Allocation Probabilities
We begin by formally defining the position-specific bidding functions b∗j , and comput-
ing their derivative with respect to the valuation. We then derive a recursive formula-
tion of the allocation probabilities, which will be used in the proofs of Lemma 4.2 and
Lemma 4.3.

Bid b∗j (v) equals the truthful VCG payment for position j given valuation v and con-
ditioned on allocation of position j. This quantity is equal to the sum of the differences
βs − βs+1 multiplied by the expected value of the s + 1-highest valuation among all
agents conditioned on v being the j-highest valuation and assuming that valuations
are drawn independently from distribution F . Formulaically,

b∗j (v) =

k∑
s=j

(βs − βs+1)

∫ v

0

(n− j)!
(n− s− 1)!(s− j)!

(
F (u)

F (v)

)n−s−1(
1− F (u)

F (v)

)s−j
f(u)

F (v)
u du

Using the fact that (1 − F (u)
F (v) )s−j =

∑s−j
t=0(−1)t(F (u)

F (v) )t, and letting Zn−s+t(v) =

( 1
F (v) )

n−s+t ∫ v
0
F (u)n−s+t du, we have that

b∗j (v) =

k∑
s=j

(βs − βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)

(
v − Zn−s+t(v)

)
.

Using that d
dv (v − Zn−s+t(v)) = (n− s+ t) f(v)F (v)Zn−s+t(v), we obtain

d

dv
pj(v) =

k∑
s=j

(βs − βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)
Zn−s+t(v). (3)

Denote by Ps,m(x) the probability that an agent is assigned position s against m
opposing agents if it reports a valuation vector x ∈ Rk≥. Then Ps,m(x) can be written



recursively as
P1,m(x) = F (x1)m, and

Ps,m(x) =

(
m

m− s+ 1

)
F (xs)

m−s+1

(
1−

s−1∑
t=1

Pt,s−1(x)

)
(4)

The intuition behind this formulation is that the agent is assigned position s if m−
s + 1 of the opposing agents have valuations smaller than xs, and if the agent is not
assigned one of the positions 1, .., s−1 against the remaining s−1 agents. An important
observation is that Ps,m(x) does not depend on x` for ` > s.

4.2. Proof of Lemma 4.2
To prove Lemma 4.2, we write the expected utility that agent iwith value v can achieve
with a report x ∈ Rk≥ as a sum of the contributions Ts(x, v) = Ps,n−1(x)(βsv − b∗s(xs))
of position s. We then group these contributions into those of positions s < j, those
of positions j and j + 1, and those of positions s > j + 1, and argue for each group
separately that the derivative in xj vanishes at xj = v.

For the contribution
∑j−1
s=1 T (x, v) of positions s < j this is rather straightforward, as

neither the allocation probability Ps,n−1(x), nor the utility βsv − b∗s(xs) subject to allo-
cation, depends on xj . Hence the derivative in xj is zero everywhere, and in particular
at xj = v.

To prove the claim for Tj(x, v)+Tj+1(x, v), we first apply the recursive formulation of
the allocation probabilities to compute the derivatives in xj of Tj(x, v) and Tj+1(x, v).
We then observe that the derivative of Tj(x, v) + Tj+1(x, v) vanishes at xj = v if and
only if a certain differential equation involving the bids b∗j (v) and b∗j+1(v) is satisfied.
Finally, we use the formulas for the truthful VCG payments conditioned on allocation
and their derivatives to show that this differential equation is satisfied.

LEMMA 4.4. Fix a particular agent and a position j. Assume that all other agents
bid truthfully and that the agent bids truthfully on positions j + 1, . . . , k. Then,

d

dxj

(
Tj(x, v) + Tj+1(x, v)

)∣∣∣
xj=v

= 0.

PROOF. First consider the contribution Tj(x, v) = Pj,n−1(x)(βjv − b∗j (xj)) of position
j. By applying (4) to Pj,n−1(x),

Tj(x, v) =

(
n− 1

n− j

)
F (xj)

n−j
(

1−
j−1∑
t=1

Pt,j−1(x)

)
(βjv − b∗j (xj)),

and thus

d

dxj
Tj(x, v) =

(
n− 1

n− j

)(
1−

j−1∑
t=1

Pt,j−1(x)

)(
(n− j)F (xj)

n−j−1f(xj)βjv−

(n− j)F (xj)
n−j−1f(xj)b

∗
j (xj)− F (xj)

n−j d

dxj
b∗j (xj)

)
.

Now consider the contribution Tj+1(x, v) = Pj+1,n−1(x)(βj+1v− b∗j+1(xj+1) of position
j + 1. By applying (4) to Pj+1,n−1(x),

Tj+1(x, v) =

(
n− 1

n− j − 1

)
F (v)n−j−1

(
1−

j∑
t=1

Pt,j(x)

)
(βj+1v − b∗j+1(v)).



By pulling Pj,j(x) out of the sum and applying (4) to it, we obtain

Tj+1(x, v) =

(
n− 1

n− j − 1

)
F (v)n−j−1 ·

(
1−

j−1∑
t=1

Pt,j(x)−

(
j

1

)
F (xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
(βj+1v − b∗j+1(v)),

and thus

d

dxj
Tj+1(x, v) = −

(
n− 1

n− j − 1

)
F (v)n−j−1

(
j

1

)
f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

)
(βj+1v − b∗j+1(v)).

We conclude that the derivative in xj of the contribution Tj(x, v) + Tj+1(x, v) of posi-
tions j and j + 1 vanishes at xj = v if and only if(

n− 1

n− j

)(
(n− j)F (v)n−j−1f(v)βjv−

(n− j)F (v)n−j−1f(v)b∗j (v)− F (v)n−j
d

dxj
b∗j (xj)

∣∣∣
xj=v

)
−
(

n− 1

n− j − 1

)
F (v)n−j−1

(
j

1

)
f(v)(βj+1v − b∗j+1(v)) = 0.

By using
(
n−1
n−j−1

)(
j
1

)
=
(
n−1
n−j
)
(n − j) to simplify and by rearranging, we obtain the fol-

lowing differential equation:

d

dxj
b∗j (xj)

∣∣∣
xj=v

= (n− j) f(v)

F (v)

[
(βjv − b∗j (v))− (βj+1v − b∗j+1(v))

]
.

We first observe that the v parts of b∗j (v) and b∗j+1(v) cancel βjv and βj+1v. This is the
case because for z ∈ {j, j + 1}, the v part of b∗z(v) is equal to
k∑
s=z

(βs − βs+1)

s−z∑
t=0

(−1)t
(
s− z
t

)
(n− j)!

(n− s− 1)!(s− z)!
v

(n− s+ t)︸ ︷︷ ︸
=1

=

k∑
s=z

(βs − βs+1)v = βzv.

It remains to show that (n − j) f(v)F (v) times the Z part of b∗j+1(v) minus the Z part of
b∗j (v) is equal to the derivative in xj of b∗j (xj) at xj = v. Formulaically, the former can
be expressed as

(n− j) f(v)

F (v)

[ k∑
s=j

(βs − βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
·

1

(n− s+ t)
Zn−s+t(v)−

k∑
s=j+1

(βs − βs+1)

s−j−1∑
t=0

(−1)t· (5)(
s− j − 1

t

)
(n− j − 1)!

(n− s− 1)!(s− j − 1)!

1

(n− s+ t)
Zn−s+t(v)

]
.

We prove the identity by showing that for all s and t, the terms in (5) are identical to
the corresponding terms in (3).



For s = j, the only possible value for t is t = 0, so the term in (5) is

(n− j) f(v)

F (v)
(βs − βs+1)(−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)
Zn−s+t(v).

Since (n− j) = (n− s+ t), we obtain the corresponding term in (3).
For s > j and any t in the correct range, the term in (5) is

(n− j) f(v)

F (v)

[
(βs − βs+1)(−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
·

1

(n− s+ t)
Zn−s+t(v)− (βs − βs+1)(−1)t

(
s− j − 1

t

)
(n− j − 1)!

(n− s− 1)!(s− j − 1)!

1

(n− s+ t)
Zn−s+t(v)

]
,

which using
(
s−j−1
t

)
=
(
s−j
t

)
s−j−t
s−j can be rewritten as

(βs − βs+1)(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)

[
n− j

n− s+ t
− s− j − t
n− s+ t

]
Zn−s+t(v).

Since n−j
n−s+t −

s−j−t
n−s+t = 1, we obtain the corresponding term in (3).

Next we consider the contribution
∑k
s=j+2 Ts(x, v) of positions s > j + 1.

LEMMA 4.5. Fix a particular agent. Assume that all other agents bid truthfully and
that the agent bids truthfully on positions j + 1, . . . , k. Then,

d

dxj

( k∑
s=j+2

Ts(x, v)

)∣∣∣
xj=v

= 0.

Note that for position s > j + 1, the contribution Ts(x, v) = Ps,n−1(x, v)(βsv − b∗s(xs))
only depends on xj through the allocation probability Ps,n−1(x, v). It therefore suffices
to show that the derivative in xj of Ps,n−1(x, v) vanishes at xj = v. We establish this
claim by means of two auxiliary lemmata, which are proved in the appendix and again
exploit the recursive formulation of the allocation probabilities.

LEMMA 4.6. Fix a particular agent and a position j. Assume that all other agents
bid truthfully and that the agent bids truthfully on positions j + 1, . . . , k. Then, for all
m ≥ j + 1,

d

dxj

(
Pj,m(x) + Pj+1,m(x)

)∣∣∣
xj=v

= 0.

LEMMA 4.7. Fix a particular agent and a position j. Assume that all other agents
bid truthfully and that the agent bids truthfully on positions j + 1, . . . , k. Then, for all
m and ` such that m ≥ ` ≥ j + 2,

d

dxj
P`,m(x)

∣∣∣
xj=v

= 0.

PROOF OF LEMMA 4.5. For position s > j+1 we first apply (4) to Ps,n−1(x) to obtain

Ts(x, v) =

(
n− 1

n− s

)
F (xs)

n−s
(

1−
s−1∑
t=1

Pt,s−1(x)

)
(βsv − b∗s(xs)),



and then split
∑s−1
t=1 Pt,s−1(x) into two parts to obtain

Ts(x, v) =

(
n− 1

n− s

)
F (xs)

n−s

(
1−

j−1∑
t=1

Pt,s−1(x)−
s−1∑
t=j

Pt,s−1(x)

)
(βsv − b∗s(xs)).

The derivative is thus

d

dxj
Ts(x, v) =

(
n− 1

n− s

)
F (xs)

n−s
(
− d

dxj

s−1∑
t=j

Pt,s−1(x)

)
(βsv − b∗s(xs)),

and we use Lemma 4.6 and Lemma 4.7 to conclude that it vanishes at xj = v.

4.3. Proof of Lemma 4.3
We now turn to Lemma 4.3, and begin by recalling the results for the one-dimensional
case. In this case the expected utility for report x given value v is equal to

k∑
s=1

βsPs,n−1(x)(v − x) +

k∑
s=1

βs

∫ x

0

Ps,n−1(t) dt,

which for truthful report x = v simplifies to
k∑
s=1

βs

∫ v

0

Ps,n−1(t) dt. (6)

We will use this formula to express the expected utility from positions j + 1, . . . , k for
which both agent i and the other agents report their valuations truthfully.

To compute the derivative in xj of the expected utility we first observe that the
contribution Ts(x, v) is independent from xj for s < j, and thus

d

dxj

( k∑
s=1

Ts(x, v)

)
=

d

dxj

( k∑
s=j

Ts(x, v)

)
=

d

dxj

(
Tj(x, v) +

k∑
s=j+1

Ts(x, v)

)
.

For the contribution Tj(x, v) of position j,

d

dxj
Tj(x, v) =

d

dxj

(
Pj,n−1(x)(βjv − b∗j (xj))

)
= βjv

d

dxj
Pj,n−1(x)− b∗j (xj)

d

dxj
Pj,n−1(x)− Pj,n−1(x)

d

dxj
b∗j (xj).

For the contributions Ts(x, v) of positions s > j we use (6) to obtain

d

dxj

k∑
s=j+1

Ts(x, v) =
d

dxj

( k∑
s=j+1

βs

∫ v

0

Ps,n−1(x1, . . . , xj , t, . . . , t)dt

)

=

k∑
s=j+1

βs

∫ v

0

d

dxj
Ps,n−1(x1, . . . , xj , t, . . . , t)dt.

Taking the derivative in v yields

d

dv

(
d

dxj

k∑
s=1

Ts(x, v)

)
= βj

d

dxj
Pj,n−1(x) +

k∑
s=j+1

βs
d

dxj
Ps,n−1(x) =

d

dxj

k∑
s=j

βsPs,n−1(x).



The final step is to argue that this expression is non-negative.
That the β fraction won increases in the report xj on position j holding everything

else fixed follows by an ex-post argument. If the agent was allocated a position s < j
then changing its reported valuation xj for position j has no effect and it will still be
allocated position s. If the agent was allocated position s = j, it will still be allocated
this position for higher xj . If the agent was allocated a position s > j or no position at
all, then by increasing the reported valuation xj for position j it will either be allocated
the same position as before or position j, which means that the β fraction won will
increase weakly.

5. CONCLUSIONS
Analyzing position auctions through the lens of robustness, we have asked whether
there exists a single design that performs well under complete and incomplete infor-
mation, in the sense that it obtains the truthful VCG revenue in every efficient equi-
librium of both settings. We have shown that an expressive GFP auction achieves the
desired robustness property, and is in fact the only standard design that does.

Our results send a clear, and surprising, message: if the goal is robustness against
uncertainty about the information agents have about one another, then it is necessary
to allow for expressiveness beyond the valuation space. This also provides a counter-
point to recent work on position auctions that has highlighted the benefits of simplicity.

An interesting question for future work is whether expressiveness is necessary for
robustness in other contexts as well. Natural candidates include settings with multi-
dimensional valuations such as combinatorial auctions, where simplified designs have
recently received a lot of attention [Christodoulou et al. 2008; Bhawalkar and Rough-
garden 2011; Feldman et al. 2013; Dütting et al. 2013; Babaioff et al. 2014], and two-
sided settings with strategic buyers and sellers, such as the assortative matching prob-
lem considered by Hoppe et al. [2009].
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A. PROOF OF LEMMA 4.6
First consider the allocation probability Pj,m(x) for position j. Applying (4) to Pj,m(x)
yields

Pj,m(x) =

(
m

m− j + 1

)
F (xj)

m−j+1

(
1−

j−1∑
t=1

Pt,j−1(x)

)
,

and thus

d

dxj
Pj,m(x) =

(
m

m− j + 1

)
(m− j + 1)F (xj)

m−j+1(m− j)f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

)
.

Now consider the allocation probability Pj+1,m(x) of position j + 1. Applying (4) to
Pj+1,m(x) yields

Pj+1,m(x) =

(
m

m− j

)
F (v)m−j

(
1−

j∑
t=1

Pt,j(x)

)
.

Pulling Pj,j(x) out of the sum and applying (4) to it yields

Pj+1,m(x) =

(
m

m− j

)
F (v)m−j

(
1−

j−1∑
t=1

Pt,j(x)−
(
j

1

)
F (xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
,



and thus

d

dxj
Pj+1,m(x) =

(
m

m− j

)
F (v)m−j

(
−
(
j

1

)
f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
.

We conclude that the derivative in xj of Pj,m(x) +Pj+1,m(x) vanishes at xj = v if and
only if (

m

m− j + 1

)
(m− j + 1)F (v)m−jf(v)−

(
m

m− j

)
F (v)m−j

(
j

1

)
f(v) = 0.

Since
(
m
m−j

)(
j
1

)
=
(

m
m−j+1

)
(m− j + 1), this is indeed the case.

B. PROOF OF LEMMA 4.7
We prove the claim by induction on m, starting with m = j + 2. In this case the only
possible value of ` is ` = j + 2, so it suffices to show that d

dxj
Pj+2,j+2(x) |xj=v= 0.

Applying (4) to Pj+2,j+2(x) shows that

Pj+2,j+2(x) =

(
j + 2

1

)
F (v)

(
1−

j+1∑
t=1

Pt,j+1(x)

)
.

By pulling Pj,j+1(x) and Pj+1,j+1(x) out of the sum this can be rewritten as

Pj+2,j+2(x) =

(
j + 2

1

)
F (v)

(
1−

j−1∑
t=1

Pt,j+1(x)−
(
Pj,j+1(x) + Pj+1,j+1(x)

))
,

and thus
d

dxj
Pj+2,j+2(x) =

(
j + 2

1

)
F (v)

d

dxj

(
− (Pj,j+1(x) + Pj+1,j+1(x))

)
.

Using Lemma 4.6 we conclude that the derivative vanishes at xj = v.
For the inductive step assume that the claim is true for all m′ < m. We have to show

that for any ` with m ≥ l ≥ j + 2 it holds that d
dxj

P`,m(x) |xj=v= 0. Applying (4) to
P`,m(x) yields

P`,m(x) =

(
m

m− `+ 1

)
F (v)m−`+1

(
1−

`−1∑
t=1

Pt,`−1(x)

)
.

By splitting
∑`−1
t=1 Pt,`−1(x) into three parts we obtain

P`,m(x) =

(
m

m− `+ 1

)
F (v)m−`+1

(
1−

j−1∑
t=1

Pt,`−1(x)−
j+1∑
t=j

Pt,`−1(x)−
`−1∑
t=j+2

Pt,`−1(x)

)
,

and thus

d

dxj
P`,m(x) =

(
m

m− `+ 1

)
F (v)m−`+1

(
− d

dxj

j+1∑
t=j

Pt,`−1(x)− d

dxj

`−1∑
t=j+2

Pt,`−1(x)

)
.

Using Lemma 4.6 and the induction hypothesis we conclude that the derivative again
vanishes at xj = v.


