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The algorithmic requirements for dominant strategy incentive compatibility, or truthfulness, are well un-
derstood. Is there a similar characterization of algorithms that when combined with a suitable payment rule
yield near-optimal welfare in all equilibria?

We address this question by providing a tight characterization of a (possibly randomized) mechanism’s
Price of Anarchy provable via smoothness, for single-parameter settings. The characterization assigns a
unique value to each allocation algorithm; this value provides an upper and a matching lower bound on
the Price of Anarchy of a derived mechanism provable via smoothness. The characterization also applies to
the sequential or simultaneous composition of single-parameter mechanisms. Importantly, the factor that
we identify is typically not in one-to-one correspondence to the approximation guarantee of the algorithm.
Rather, it is usually the product of the approximation guarantee and the degree to which the mechanism is
loser independent.

We apply our characterization to show the optimality of greedy mechanisms for single-minded combinato-
rial auctions, whether these mechanisms are polynomial-time computable or not. We also use it to establish
the optimality of a non-greedy, randomized mechanism for independent set in interval graphs and show that
it is strictly better than any other deterministic mechanism.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

Additional Key Words and Phrases: Algorithmic Game Theory, Price of Anarchy, Smoothness

1. INTRODUCTION
Mechanism design studies optimization problems in which the input is held by strate-
gic agents. It can be viewed as algorithm design with the additional twist that the
input is provided by selfish agents that need to be incentivized via payments to reveal
this information. A natural requirement in this context is truthfulness. The algorith-
mic requirements for dominant strategy incentive compatibility or Bayes-Nash incen-
tive compatibility are well understood [e.g., Rochet 1987; Myerson 1981; McAfee and
McMillan 1988; Jehiel et al. 1996; Jehiel and Moldovanu 2001; Krishna and Maenner
2001; Saks and Yu 2005; Bikhchandani et al. 2006].

Many practical mechanisms, however, are not truthful. Examples include the Gen-
eralized Second Price (GSP) mechanism for sponsored search auctions (see, e.g., [Edel-
man et al. 2007; Varian 2007]) or auction protocols for combinatorial auctions that
have been used to sell spectrum rights (see, e.g., [Milgrom 2004]). While the exact
arguments that have been used to explain the use of non-truthful mechanisms typi-
cally depend on the application, there are some general themes. One of these themes
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is that these mechanisms are often viewed as simpler than their truthful counter-
parts. For example, a pay-your-bid rule is simpler than a VCG-style payment rule that
would be required for truthfulness. Another theme is that the properties that ensure
truthfulness are a “global” property of mechanisms that is difficult to achieve. This
plays a particular role when one considers that agents typically participate in several
mechanisms at once. In this case truthfulness of the individual mechanisms does not
necessarily guarantee truthfulness of the global mechanism.

In this paper we do not seek to understand why non-truthful mechanisms are used
in practice, but rather which (algorithmic) properties of mechanisms ensure that they
perform well despite the strategic behavior of agents. Specifically, we seek to under-
stand which properties of a mechanism ensure that all its equilibria, ideally from a
broad range of equilibrium concepts, are close to optimal. That is, we want to under-
stand what keeps the Price of Anarchy of a mechanism with respect to equilibrium
concepts such as correlated equilibria or Bayes-Nash equilibria small.

The most versatile technique known to date for proving bounds that apply to these
equilibrium concepts is the smoothness framework. Originally formulated by Rough-
garden [2012a,b] for games, it was recently generalized to mechanisms by Syrgka-
nis and Tardos [2013]. Smoothness is a parametrized property, the parameters are
λ, µ ≥ 0, that a mechanism can have and which guarantees that its Price of Anarchy,
the worst possible ratio between the optimal welfare and the welfare at equilibrium,
is (upper) bounded by O(max(1, µ)/λ). Another nice aspect about smoothness is that
the simultaneous or sequential composition of smooth mechanisms remains smooth
[Syrgkanis and Tardos 2013]. What smoothness generally does not achieve is to also
show that the bound is best possible. A lower bounding technique, however, is essential
for singling out which properties of a mechanism ensure that it achieves near-optimal
performance in all equilibria. Without it we can only hope for sufficient conditions, but
not for conditions that are both sufficient and necessary.

In fact, most of the previous work gave sufficient conditions. Lucier and Borodin
[2010], for example, showed that greedy algorithms with approximation guarantee
α have a Price of Anarchy of O(α); while Dütting et al. [2015] showed that this is
also true for the algorithm design principle of relax-and-round. In a similar spirit,
Babaioff et al. [2014] found that in certain settings declared welfare maximization
translates into Price of Anarchy guarantees, and conjectured that this connection could
be true much more generally. Specifically, they conjectured that it could be true for
approximate declared welfare maximization.

1.1. Our Results
We consider general single-parameter settings where the algorithmic problem consist
of choosing a feasible set of “winners” S ⊆ N from a family of feasible sets F ⊆ 2N that
(approximately) maximizes welfare as given by the sum

∑
i∈S vi of the winners’ values

vi for being selected. We focus on monotone algorithms in which stating a higher value
can only increase the chance of winning.

These settings are of particular interest for various reasons. First of all, we are not
aware of any characterization of algorithms and their Price of Anarchy. Specifically, not
even for monotone, single-parameter mechanisms it is understood which algorithmic
properties guarantee that all equilibria are close to optimal. A second reason is their
potential use in composed mechanisms [Syrgkanis and Tardos 2013]. One instance
of such composition is the case of multi-minded bidders. Here, bidders can be served
in multiple different ways, which they might value differently. Designing a truthful
mechanism for such a setting is far more complex than for the single-parameter set-
ting. In particular, monotonicity in each component is not sufficient for truthfulness.
Another instance is when agents participate in several different mechanisms, either



simultaneously or sequentially. In this case designing truthful mechanisms is typically
even infeasible as the property that ensures truthfulness is not a “local” property of
the individual mechanisms.

Our results will not only apply to individual mechanisms, but will also extend to
their composition. Moreover, they will apply for to a broad range of payment schemes,
including the pay-your-bid rule in which agents pay their bid if they are chosen and
zero otherwise or VCG-style payments in which agents pay their externality. We make
the standard assumption that the agents have quasi-linear preferences.
Exact Characterization. Our main result is a tight characterization of single-parameter
algorithms, deterministic or randomized, that when paired with suitable payments re-
sult in a mechanism with low Price of Anarchy. To this end, we introduce an instance-
based measure termed permeability. This measure only depends on the feasibility
structure and the underlying allocation algorithm, which determines the winners for
a given bid vector. It provides an upper and a matching lower bound on the Price of
Anarchy provable via smoothness (a.k.a. the robust Price of Anarchy [Roughgarden
2012a]).

In case of a deterministic mechanism, the definition reads as follows. Consider an
allocation algorithm ALG : RN → F mapping each vector of bids to a feasible outcome.
For a fixed agent i ∈ N and bids b−i of the agents other than i define τi(b−i) as the
largest value that this agent can bid and still lose. Then the permeability γ of ALG is
the smallest factor such that for all feasible sets of agents S,∑

i∈S
τi(b−i) ≤ γ ·

∑
i∈ALG(b)

bi.

This and similar properties have been used in previous works to upper-bound the
Price of Anarchy by O(γ) (see, e.g., [Lucier and Borodin 2010; Syrgkanis and Tardos
2013; Babaioff et al. 2014; Hartline et al. 2014]). Our main technical achievement is
to show that the above condition and a suitable generalization to randomized mech-
anisms yields matching upper and lower bounds. That is, we show that the Price of
Anarchy provable via smoothness of a mechanism based on a γ-permeable (random-
ized) algorithm is Θ(γ). This upper and lower bound also naturally extends to the
simultaneous or sequential composition of mechanisms.

In contrast to mechanism smoothness, permeability is a property of the underlying
feasibility structure and allocation algorithm. It does not involve the strategic aspects
faced by the agents, particularly not the payments and utilities. Showing upper and
lower bounds therefore boils down to purely combinatorial arguments, similar to ana-
lyzing the approximation ratio of an algorithm.
Optimal Mechanisms. An important feature of our characterization is that by consid-
ering a certain problem structure and arguing that the value we identify must be of
a specific order for any mechanism, one can establish lower bounds that apply to all
mechanisms.

As a first example of this proof pattern, we provide lower bounds for single-minded
combinatorial auctions. The bounds are Ω(d) and Ω(

√
m), where d is the maximum

bundle size and m is the number of items. These bounds apply to both determinis-
tic and randomized mechanisms. They match the approximation and hence Price of
Anarchy guarantees of greedy-by-value and greedy-by-square-root-of-the-bundle-size
[Lucier and Borodin 2010]. We thus establish the optimality of greedy algorithms for
this problem among all deterministic and randomized mechanisms, whether these al-
gorithms are polynomial-time computable or not.

Then, as a second example, we design a randomized, non-greedy polynomial-time
mechanism for problems whose feasibility structure can be expressed as interval



graphs. We use our framework to show that this mechanism has a Price of Anarchy
of O(log(n)), where n is the number of players. We prove its optimality by providing
an (almost) matching lower bound of Ω(log(n)/ log log(n)) that applies to randomized
mechanisms. We complement this with a lower bound of Ω(

√
n) for deterministic mech-

anisms, which in particular shows that greedy algorithms are provably suboptimal for
this problem.

Further Results. We also provide an answer to the question whether (approximate) de-
clared welfare maximization is sufficient. Our characterization implies that generally
the Price of Anarchy is not in one-to-one correspondence to the approximation guaran-
tee. Rather, as we show, it is typically determined by the product of the approximation
guarantee and the degree to which the mechanism is loser independent. We thus not
only show what the relevant factors involved in choosing between different algorithms
are, but also how the respective factors come together to jointly determine the perfor-
mance guarantee.

Then, we point out the interesting possibility of indirect algorithmic characteriza-
tions of the factor we show uniquely determines an algorithm’s applicability in strate-
gic settings. To this end, we show that for all problem structures the corresponding fac-
tor for exact declared welfare maximization is given by the approximation guarantee
of the greedy-by-value algorithm for this problem. We thus show how our parameter
for a certain class of algorithms is uniquely determined by the approximation guaran-
tee of a different class of algorithms. On a conceptual level we thus reduce the novel
question of understanding the factor that we define to a problem that the theoretical
computer science community is used to and well trained in.

Finally, we give some evidence that our characterization also applies to non-smooth
mechanisms. Specifically, we show that for deterministic mechanisms, under mild as-
sumptions, there exists a pure Nash equilibrium which achieves the welfare loss that
we establish in our upper/lower bounds.

1.2. Related Work
Their is a long body of work that characterizes dominant strategy (or Bayes-Nash)
incentive compatibility [e.g., Rochet 1987; Myerson 1981; McAfee and McMillan 1988;
Jehiel et al. 1996; Jehiel and Moldovanu 2001; Krishna and Maenner 2001; Saks and
Yu 2005; Bikhchandani et al. 2006]. An important difference to our work is that this
line of work does not need to worry about multiplicity of equilibria: if truthtelling is an
equilibrium this equilibrium provides a focal point for the analysis.

The smoothness framework was introduced by [Roughgarden 2012a,b] for games
and extended to mechanisms by Syrgkanis and Tardos [2013]. As of today this tech-
nique is the main technique for proving Price of Anarchy bounds that apply to gen-
eral equilibrium concepts such as correlated equilibria or Bayes-Nash equilibria. Very
recently, Kulkarni and Mirrokni [2015] presented a proof pattern based on LP and
Fenchel duality that also allows to prove such Price of Anarchy bounds. It is not yet
clear how this technique relates to smoothness. As formulated this technique only al-
lows to prove upper bounds, and thus does not provide the lower bounds that would be
required for a characterization result.

The closest to our characterization approach are the already mentioned works of
Lucier and Borodin [2010] and Dütting et al. [2015] who gave general constructions
that show how for larger classes of algorithms the approximation guarantee automati-
cally translates into a Price of Anarchy guarantee that applies to correlated and Bayes-
Nash equilibria. The Price of Anarchy of declared welfare maximizers was analyzed in
[Dütting et al. 2013] and [Babaioff et al. 2014], while Dütting et al. [2015] characterize



the problem structures and mechanisms that admit a unique correlated equilibrium
that achieves optimal social welfare.

Also relevant as a precursor and parallel literature to our work is work that an-
alyzes the Price of Anarchy of simple mechanisms, such as [Christodoulou et al.
2008; Bhawalkar and Roughgarden 2011; Feldman et al. 2013], work that extends the
smoothness concept so that it also yields revenue guarantees [Hartline et al. 2014],
and work that identifies barriers to near-optimal equilibria [Roughgarden 2014]. The
first line of work differs from ours as it considers the performance of simple mecha-
nisms for specific problems. The second line of work suggests an interesting direction
for future work, namely extending our characterization to also capture revenue. Fi-
nally, the third line of work is in some sense orthogonal to our work as it points out
computational rather than information-theoretic barriers.

2. PRELIMINARIES
Mechanism Design Basics. We focus on mechanisms for binary single-parameter prob-
lems. Each of n players i ∈ N holds a single private non-negative number vi. He can
either “win” or “lose”; his valuations for these outcomes are vi and 0. There is a family
of subsets of players ∅ 6= F ⊆ 2N , which defines feasible solutions, that is, which play-
ers can win simultaneously. In many applications, this set system is downward closed.
However, this is not a requirement for our results. The set F is assumed to be public
knowledge. The social welfare of a set of winners S ∈ F is defined as

∑
i∈S vi.

We consider direct mechanisms M , which ask the agents to report their valuations;
these reported valuations are referred to as bids, denoted by b. Based on the bids, the
mechanism computes a feasible solution ALG(b) ∈ F . The function ALG is called the
allocation algorithm; it may be randomized. We assume it to be monotone in every
component. That is, for every player i, every two bids bi ≤ b′i, and every bid vector b−i,
we have Pr [i ∈ ALG(bi, b−i)] ≤ Pr [i ∈ ALG(b′i, b−i)].

Given the bids mechanism M also computes payments p(b) ∈ Rn≥0. A pay-your-
bid mechanism charges winning agents i ∈ ALG(b) their bid, while losing agents
i 6∈ ALG(b) pay nothing. That is, pi(b) = b for i ∈ ALG(b) and pi(b) = 0 otherwise. More
generally, we will consider mechanisms whose payment rule p satisfies 0 ≤ pi(b) ≤ bi
for i ∈ ALG(b) and pi(b) = 0 if i 6∈ ALG(b). That is, mechanisms that do not overcharge
the players.

We assume quasi-linear utilities and risk neutrality. For a deterministic mechanism,
this means that if bidder i wins under bid vector b, his utility is vi − pi(b), otherwise
it is 0. More generally ui(b) = viPr [i ∈ ALG(b)] − E [pi(b)]. We study equilibria that
are based on these utility functions. Most prominently, this includes pure and mixed
Nash equilibria, and their extensions namely Bayes-Nash equilibria and correlated
equilibria [Nisan et al. 2007].

Generally, an equilibrium is a probability distribution over bid vectors b. Un-
der incomplete information, the valuations will come from a product distribution
D = D1 × · · · × Dn. The complete information setting, where the valuation profile
is fixed, corresponds to the special case where the support size of each distribution
is one. We write SW (D, b) = Ev∼D[

∑
i∈N viPr[i ∈ ALG(b)]] for the expected welfare

of a mechanism on input b. We denote the optimal expected welfare by SWopt(D) =
Ev∼D[maxS∈F

∑
i∈S vi]. The Price of Anarchy with respect to an equilibrium concept

Eq ∈ {PureNash,MixedNash,Correlated,BayesNash} is the worst possible ratio between
the optimal expected welfare and the expected welfare at equilibrium

max
D,π∈Eq(D)

SWopt(D)

Eb∼π[SW (D, b)]
.



Smoothness Framework. Syrgkanis and Tardos [2013] defined a mechanism to be
weakly (λ, µ1, µ2)-smooth for each valuation profile v and every bid profile b there exists
a (possibly randomized) strategy b′i for every agent i that may depend on the valuation
profile v of all agents and the bid bi of that agent such that∑

i∈N
ui(b

′
i, b−i) ≥ λ ·max

S∈F

∑
i∈S

vi − µ1 ·
∑
i∈N

E [pi(b)]− µ2 ·
∑
i∈N

biPr [i ∈ f(b)] .

A mechanism is called (λ, µ)-smooth if it is weakly (λ, µ, 0)-smooth.

THEOREM 2.1 (SYRGKANIS AND TARDOS [2013]). If a mechanism is weakly
(λ, µ1, µ2)-smooth and agents have the possibility to withdraw from the mechanism
and do not overbid, then the expected social welfare at any pure or mixed Nash, corre-
lated, or mixed Bayes-Nash equilibrium is at least λ/(max(µ1, 1) + µ2) of the optimal
social welfare. If a mechanism is (λ, µ) smooth, then the overbidding assumption is not
required and the bound is λ/max(µ, 1).

Furthermore, as shown in [Syrgkanis and Tardos 2013], the simultaneous and
sequential composition of multiple (weakly) smooth mechanisms remains (weakly)
smooth.

Following Roughgarden [2012a], we define the robust Price of Anarchy of a mech-
anism M to be the infimum of all ratios (max(µ1, 1) + µ2)/λ such that M is weakly
(λ, µ1, µ2)-smooth.

3. EXACT CHARACTERIZATION
In this section we give a tight characterization of the Price of Anarchy of a given
single-parameter mechanism. The crucial step is the definition of a measure called
permeability, which relates the critical bids of groups of players to the reported wel-
fare. Intuitively, it captures how resistant the allocation algorithm is towards losing
players. The higher the factor that we define is the less permeable the algorithm.

We then show that permeability is the quintessential property of an allocation algo-
rithm when considering its use in a non-truthful mechanism. It uniquely determines
the best Price of Anarchy bound provable via smoothness (a.k.a. the robust Price of
Anarchy) for both deterministic and randomized mechanisms.

Finally, we argue that permeability also precisely characterizes the Price of Anar-
chy provable via smoothness for simultaneous or sequential composition of single-
parameter mechanisms.

3.1. Deterministic Mechanisms
As a warm-up and to build up some intuition we first consider deterministic algo-
rithms. For deterministic algorithms ALG : Rn → F we define permeability as follows.

For a fixed agent i ∈ N and bids b−i of the agents other than i define τi(b−i) as the
largest value that this agent can bid and still lose. Then the permeability γ of ALG is
the smallest factor such that for all feasible sets of agents S ∈ F ,∑

i∈S
τi(b−i) ≤ γ ·

∑
i∈ALG(b)

bi.

In words: If we take a group of players S and compare the critical bids that these
players would have to make to become winners to the reported welfare achieved by the
algorithm, then the former can only be larger than the latter by a factor of γ.

THEOREM 3.1. A mechanism based on a γ-permeable algorithm is weakly ( 1
2 , 0, γ)-

smooth. In particular, a pay-your-bid mechanism based on a γ-permeable algorithm is
( 1
2 , γ)-smooth.



PROOF. For each bidder i, let b′i = 1
2vi. Furthermore, let S = OPT (v). Observe that

for some i ∈ S, we always have ui(b′i, b−i) ≥ 1
2vi − τi(b−i), no matter if it is selected by

the algorithm or not. Summing over all bidders in S, we get

∑
i∈N

ui(b
′
i, b−i) ≥

∑
i∈S

ui(b
′
i, b−i) ≥

1

2

∑
i∈S

vi −
∑
i∈S

τi(b−i) ≥
1

2

∑
i∈S

vi − γ
∑

i∈ALG(b)

bi .

We thus obtain an upper bound of O(γ) on the Price of Anarchy of a mechanism
based on a γ-permeable algorithm. Surprisingly, the permeability γ of an algorithm
can also be used to prove a matching lower bound of Ω(γ). Before we prove this let us
first see how to generalize the definition of permeability to randomized mechanisms.

3.2. Randomized Mechanisms
In contrast to a deterministic algorithm, a randomized algorithm usually does not have
clear breakpoints such as the critical values τi(bi). Instead, the winning probability
might increase stepwise or even smoothly. To take this into consideration, we define a
critical value for each probability 0 ≤ q ≤ 1 as follows. Given a bid vector b, for some
bidder i ∈ N and 0 ≤ q ≤ 1, let τi(b−i, q) = sup{b′i | Pr [i ∈ ALG(b′i, b−i)] < q}. That
is, roughly spoken, τi(b−i, q) is the highest value that i can bid against b such that the
winning probability remains below q.

The permeability of a monotone randomized algorithm is now the infimum over all
numbers γ ≥ 1 such that for any bid vector b and any feasible set S

∑
i∈S

τi

(
b−i,

1

γ

)
≤ γ

∑
i∈N

biPr [i ∈ ALG(b)] .

Observe that larger values of γ loosen this condition in two ways: Larger values of γ
cause each τi(b−i,

1
γ ) term and hence the sum on the left-hand side to be smaller. At

the same time, the right-hand side increases with γ.

However, for a deterministic algorithm τi

(
b−i,

1
γ

)
= τi(b−i) for any γ ≥ 1. There-

fore, this definition of permeability is consistent with the one stated for deterministic
algorithms.

First we show that using a γ-permeable (randomized) algorithm is sufficient to show
a bound of O(γ) on the Price of Anarchy.

THEOREM 3.2. A mechanism based on a γ-permeable algorithm is weakly ( 1
2γ , 0, 1)-

smooth. In particular, a pay-your-bid mechanism based on a γ-permeable algorithm is
( 1
2γ , 1)-smooth.

PROOF. For each bidder i, let b′i = 1
2vi. Furthermore, let S = OPT (v).

If Pr [i ∈ ALG(b′i, b−i)] < 1
γ , then τi

(
b−i,

1
γ

)
≥ b′i. Thus ui(b

′
i, b−i) ≥ 0 ≥

1
γ

(
1
2vi − τi

(
b−i,

1
γ

))
.

If Pr [i ∈ ALG(b′i, b−i)] ≥ 1
γ , then

ui(b
′
i, b−i) =

1

2
viPr [i ∈ ALG(b′i, b−i)] ≥

1

2
vi

1

γ
≥ 1

γ

(
1

2
vi − τi

(
b−i,

1

γ

))
.



Summing over all bidders in S, we get∑
i∈N

ui(b
′
i, b−i) ≥

∑
i∈S

ui(b
′
i, b−i)

≥ 1

2γ

∑
i∈S

vi −
∑
i∈S

1

γ
τi

(
b−i,

1

γ

)
≥ 1

2γ

∑
i∈S

vi −
∑
i∈N

biPr [i ∈ ALG(b)] .

Interestingly, this bound is tight on a per-instance basis: Any smoothness-based
proof will always imply a guarantee of Ω(γ) on the Price of Anarchy.

THEOREM 3.3. A mechanism based on a γ-permeable algorithm is not weakly
(λ, µ1, µ2)-smooth for any λ, µ1, and µ2 such that λ

2(µ1+µ2+1) >
1
γ .

PROOF. Given any b and S making the bound tight. For some arbitrary ε > 0, set
vi = τi

(
b−i,

1
γ

)
− ε for i ∈ S, and vi = bi otherwise.

Let b′ be an arbitrary bid vector. We assume that b′i > vi is weakly dominated. There-
fore, monotonicity gives us E [ui(b

′
i, b−i)] ≤ viPr [i ∈ ALG(vi, b−i)].

For i ∈ S, this implies E [ui(b
′
i, b−i)] ≤ viPr [i ∈ ALG(vi, b−i)] ≤ 1

γ τi

(
b−i,

1
γ

)
. For

i 6∈ S, we naturally have E [ui(b
′
i, b−i)] ≤ viPr [i ∈ ALG(vi, b−i)] = biPr [i ∈ ALG(b)].

As b and S are chosen to make the bound tight, we have
∑
i∈N biPr [i ∈ ALG(b)] =

1
γ

∑
i∈S τi

(
b−i,

1
γ

)
. This implies for all µ1, µ2 ≥ 0∑

i∈N
E [ui(b

′
i, b−i)] + (µ1 + µ2)

∑
i∈N

biPr [i ∈ ALG(b)]

≤
∑
i∈S

1

γ
τi

(
b−i,

1

γ

)
+ (µ1 + µ2 + 1)

∑
i∈N

biPr [i ∈ ALG(b)]

≤ (µ1 + µ2 + 1)

(∑
i∈S

1

γ
τi

(
b−i,

1

γ

)
+
∑
i∈N

biPr [i ∈ ALG(b′i, b−i)]

)

=
2(µ1 + µ2 + 1)

γ

∑
i∈S

τi

(
b−i,

1

γ

)
=

2(µ1 + µ2 + 1)

γ

∑
i∈S

vi +
2(µ1 + µ2 + 1)|S|ε

γ

≤ 2(µ1 + µ2 + 1)

γ

∑
i∈OPT (v)

vi +
2(µ1 + µ2 + 1)|S|ε

γ
.

On the other hand, to make the mechanism weakly (λ, µ1, µ2)-smooth, we need∑
i∈N

E [ui(b
′
i, b−i)] ≥ λ

∑
i∈OPT (v)

vi − µ1

∑
i∈N

E [pi(b)]− µ2

∑
i∈N

biPr [i ∈ ALG(b′i, b−i)]

≥ λ
∑

i∈OPT (v)

vi − (µ1 + µ2)
∑
i∈N

biPr [i ∈ ALG(b′i, b−i)] .



In combination, we get

λ
∑

i∈OPT (v)

vi ≤ 2(µ1 + µ2 + 1)
1

γ

∑
i∈OPT (v)

vi +
2(µ1 + µ2 + 1)|S|ε

γ
.

As this bound holds for all ε > 0, we also have λ ≤ 2(µ1+µ2+1)
γ .

3.3. Composition of Mechanisms
Syrgkanis and Tardos [2013] have shown that the simultaneous or sequential compo-
sition of mechanisms remains smooth. Applied to single parameter mechanisms there
result for the simultaneous composition of mechanisms says that whenever agents
have XOS, or fractionally subadditive valuations, then the simultaneous composition
of k mechanisms Mj that are (λ(j), µ(j))-smooth is (minj λ

(j),maxj µ
(j))-smooth. Simi-

larly, applied to the sequential composition of single-parameter mechanisms, there re-
sult says that if agents have unit demand valuations, then the sequential composition
of k single-parameter mechanismsMj that are (λ(j), µ(j))-smooth leads to a mechanism
that is (minj λ

(j),maxj µ
(j) + 1)-smooth.

Since, as we have shown, every pay-your-bid mechanism based on a γ-permeable
mechanism is (1/2γ, 1)-smooth, we can user their result to show that the simultaneous
or sequential composition of k pay-your-bid mechanisms based on γ1, . . . , γk-permeable
algorithms is (1/(2 maxj γj), 1)-smooth resp. (1/(2 maxj γj), 2)-smooth. Maybe more sur-
prisingly, not only our upper bound but also our lower bound carries over to composi-
tions. For this we simply apply the lower bound proof to the pay-your-bid mechanism
that is based on the algorithm with the worst γj .

Both the results of Syrgkanis and Tardos and the above arguments that show that
our upper and lower bounds carry over to compositions apply equally well to weakly
smooth mechanisms.

4. OPTIMAL MECHANISMS
Due to the characterization via permeability, we can bound the Price of Anarchy of
mechanisms by only arguing about the allocation algorithm, abstracting from the
strategic aspects such as private valuations and bids. This is particularly helpful to
derive impossibility results. In this section, we demonstrate this with two examples.
First, we consider the well-known setting of combinatorial auctions. Here, we can show
that existing greedy algorithms perform optimally in terms of permeability, even com-
pared to unlimited computational power. That is, these algorithms achieve the best-
possible robust Price of Anarchy.

We also study the weighted independent-set problem in interval graphs. This prob-
lem is solvable in polynomial time. However, no deterministic algorithm is γ-permeable
for γ ∈ o(

√
n). With randomization, there is an O(log n)-permeable algorithm. We will

show that this is almost optimal, too.

4.1. Combinatorial Auctions
In a combinatorial auction, m items are sold. Each bidder i is interested a (publicly
known) bundle of items Ti ⊆ [m]. A set of bidders S ⊆ N is feasible (i.e., S ∈ F) if and
only if Ti ∩ Ti′ = ∅ for all i, i′ ∈ S, i 6= i′. By d we denote the maximum bundle size
maxi∈N |Ti|.

Simple greedy algorithms achieve approximation factors O(
√
m) for the case of m

items and O(d) [Lehmann et al. 2002]. The results by Lucier and Borodin [2010]
and Syrgkanis and Tardos [2013] imply that these bounds transfer to robust-price-
of-anarchy guarantees.



THEOREM 4.1. There is no algorithm for combinatorial auctions that is γ-permeable
for γ = o(

√
m) or γ = o(d).

PROOF. To show the statement, let without loss of generality d be a prime number
and set m = d2. We show that there is an instance with d2 bidders and d2 items such
that for every algorithm there is a bid vector b for which∑

i∈S
τi

(
b−i,

2

d

)
≥ d

2
E
[∑
i∈N

bi(f(b))

]
for some feasible set S.

We consider the finite field Fd. We identify both the set of items and the set of bidders
by Fd×Fd. Bidder (i, j) ∈ Fd×Fd is interested in buying set T(i,j) = {(x, ix+j) | x ∈ Fd}.
Observe that for (i, j) 6= (i′, j′), we have T(i,j) ∩ T(i′,j′) = ∅ if and only if i = i′. That is,
feasible solutions are precisely subsets of bidders that share the same first index.

Furthermore, for some z ∈ Fdd, let us further define a bid vector bz by setting bz(i,j) = 1

if zi = j and 0 otherwise. This means that in bz no two bidders bidding 1 share the first
same index. Therefore any pair of bidders bidding 1 simultaneously exclude each other.

To show the existence of the claimed b, we use the probabilistic method. We draw z
uniformly at random from Fdd and i uniformly at random from Fd independently. In the
bid vector bz, the winning probabilities of bidders bidding 1 sum up to at most 1 due to
mutual exclusion. Therefore, the expected winning probability of (i, zi) is at most 1

d .
Next, we describe an alternative way of drawing z. For this purpose, draw z̃ uni-

formly at random from Fdd. Again, i uniformly at random from Fd independently. Fur-
thermore, j is now drawn independently uniformly from Fd. We derive z by setting
zi = j and zi′ = z̃i′ for i′ 6= i.

We already observed that the expected winning probability of (i, zi) in bz is at most
1
d . This means, there have to be ẑ and î such that, conditioned on z̃ = ẑ and i = î, the
expected winning probability of (̂i, j) in bz is at most 1

d .
We now define b by setting b(i′,j′) = 1 for i′ 6= î and z̃i′ = j′ and 0 otherwise. By the

above construction, the expected winning probability of (̂i, j) in (1, b−(̂i,j)) is at most 1
d .

By Markov’s inequality this means that with probability at least 1
2 it is less than 2

d . In
such a case, τ(̂i,j)(b−(̂i,j),

2
d ) ≥ 1. That is,∑

j′∈Fd

τ(̂i,j′)

(
b−(̂i,j′),

2

d

)
≥ d

2
.

4.2. Independent Set in Interval Graphs
We now turn to the independent-set problem in interval graphs, which can also be con-
sidered a more structured version of combinatorial auctions. Formulated as a single-
parameter mechanism design problem, the task is as follows. Each bidder i is inter-
ested in a (publicly known) interval of real numbers Ti = [li, ri] ⊆ R. Again, S ∈ F
if and only if Ti ∩ Ti′ = ∅ for all i, i′ ∈ S, i 6= i′. So, this problem corresponds to a
combinatorial auction where all bidders desire sets Ti of connected items.

THEOREM 4.2. For independent set in interval graphs, there is no γ-permeable de-
terministic algorithm for γ = o (

√
n).

PROOF. Let Ti = [i, i] for 1 ≤ i ≤ n − 1 and Tn = [1, n − 1]. Consider a fixed γ-
permeable algorithm. Observe that its declared welfare on b = (0, . . . , 0, 1) is at most 1.
Therefore, we have

∑n−1
i=1 τi(b−i) ≤ γ.



Now consider some i ≤ n − 1 and ε > 0 and the bid vector (τi(b−i) + ε, b−i). Under
this bid vector bidder i wins. That is, the declared welfare achieved by the algorithm is
τi(b−i) + ε. Bidder n is now a loser. By monotonicity of the algorithm his critical value
under the modified bid vector has to be at least 1. This means, we have 1 ≤ γ(τi(b−i)+ε)

for all i ≤ n− 1 and thus n− 1 ≤ γ
∑n−1
i=1 (τi(b−i) + ε).

Multiplying both obtained inequalities, we get (n − 1)
∑n−1
i=1 τi(b−i) ≤

γ2
∑n−1
i=1 (τi(b−i) + ε) for all ε > 0. By continuity, this implies (n − 1)

∑n−1
i=1 τi(b−i) ≤

γ2
∑n−1
i=1 τi(b−i) and thus n− 1 ≤ γ2.

Indeed this proof directly breaks if one allows randomization. This is due to the
fact that there are only two Pareto-optimal solutions. Randomizing between the two of
them would give a 2-permeable algorithm. Indeed this idea generalizes as follows.

THEOREM 4.3. For independent set in interval graphs, there is an O(log n)-
permeable randomized algorithm.

PROOF. Given a bid vector b, the algorithm uses the maximum bid bmax = maxi∈N bi
to divide bidders into classes. For j ∈ N, let Uj = {i ∈ N | bi ≥ 2−j+1bmax} be the set
of bidders whose bid is at least 2−jbmax. The algorithm proceeds by first applying the
greedy algorithm that finds the maximum unweighted independent set on each set Uj
for j ∈ [k] where k = 2dlog2 ne+1. Let the respective outcome be denoted byGj(b). Next,
it defines Hj(b) = Gj(b) \

⋃
j′<j Hj′(b). Finally, it draws J uniformly at random from

[k] and returns HJ(b). This algorithm is monotone because the probability of being
selected is either 0 or 1

k and increasing the bid can never reduce the probability.
We claim that this algorithm is O(log n)-permeable. That is, we have to show that

for any set S ∈ F and any bid vector b, we have

∑
i∈S

τi

(
b−i,

1

k

)
= O(log n)

∑
i∈N

biPr [i ∈ ALG(b)] .

Observe that τi
(
b−i,

1
k

)
≤ 2bmax. This is due to the fact that for any ε > 0, bidder i has

a separate class on (2bmax + ε, b−i) and is thus selected with probability 1
k .

Let S′ = {i ∈ S | Pr [i ∈ ALG(b)] < 1
k}. For some ε > 0, define a modified bid vector b′

by setting b′i = max{ 12τi
(
b−i,

1
k

)
− ε, bi} otherwise. By definition Pr [i ∈ ALG(b′i, b−i)] <

1
k for all i ∈ S′. Furthermore, as b′i ≤ bmax, under all bid vectors (b′i, b−i), the class
structure remains unchanged. This means that some bidder i ∈ S′ can be included
in more Uj sets in (b′i, b−i) than in b but in none of them he is selected by the greedy
algorithm for the unweighted problem. Adding bidder that are not selected does not
affect the way a greedy algorithm computes its solution. Therefore, the same effect
occurs if all i ∈ S′ move simultaneously to b′i. Formally, this means that ALG(b) and
ALG(b′) are identically distributed, in particular Pr [i ∈ ALG(b′)] < 1

k for all i ∈ S′.
We now have ∑

i∈S
τi

(
b−i,

1

k

)
≤
∑
i∈S

(2b′i + ε) .

Furthermore, the algorithm is an O(log n)-approximation for the following reason.
On the one hand, the optimum is bounded by always taking the respective upper
splitting points for the classes and Uj ∩ OPT (b′) is always a feasible solution to the



respective unweighted independent set problem, i.e., |Gj(b′)| ≥ |Uj ∩OPT (b′)|.

∑
i∈OPT (b′)

b′i ≤
k∑
j=1

2−j+2bmax|Uj ∩OPT (b′)|+
∑
i 6∈Uk

b′i

≤
k∑
j=1

2−j+2bmax|Uj ∩OPT (b′)|+ 2−kbmaxn

≤
k∑
j=1

2−j+2bmax|Gj(b′)|+ 2−kbmaxn

≤ 4kE
[
2Jbmax|GJ(b′)|

]
+
bmax

n
.

On the other hand, the geometric series gives us

b′iPr [i ∈ ALG(b′)] =
1

k
b′i

∣∣∣∣∣∣
⋃
j

Hj(b
′) ∩ {i}

∣∣∣∣∣∣ ≥ 1

k

k∑
j=1

2−jbmax|Gj(b′) ∩ {i}| ,

and therefore ∑
i∈N

b′iPr [i ∈ ALG(b′)] ≥ E
[
2−Jbmax|GJ(b′)|

]
.

As trivially
∑
i∈OPT (b′) b

′
i ≥ bmax, we get∑

i∈N
b′iPr [i ∈ ALG(b′)] ≥ 1

4k(1− 1
n )

∑
i∈OPT (b′)

b′i .

This implies∑
i∈N

biPr [i ∈ ALG(b)] =
∑
i∈N

b′iPr [i ∈ ALG(b′)] = Ω

(
1

log n

) ∑
i∈OPT (b′)

b′i ≥ Ω

(
1

log n

)∑
i∈S

b′i .

So, in combination∑
i∈S

τi

(
b−i,

1

k

)
= O(log n)

∑
i∈N

biPr [i ∈ ALG(b)] + nε .

By taking the limit for ε to 0, this yields the claim.

However, the O(log n)-bound is also almost optimal.

THEOREM 4.4. For independent set in interval graphs, there is no γ-permeable ran-
domized algorithm for γ = o

(
logn

log logn

)
.

PROOF. We will show that there is an instance such that for each algorithm there
is a bid vector b for which∑

i∈S
τi(b−i, q) = Ω(log n)E

[∑
i∈N

bi(f(b))

]

for some feasible set S and q = O
(

log logn
logn

)
.



The instance is a interval graph of nested intervals. It is constructed recursively as
follows: We start on level 0 with only a single interval. Level `+ 1 is derived by placing
r = log4 n intervals next to each other into each interval of level `. This way, we obtain
a variant of an r-ary tree with shortcuts. Its height is h = Θ( logn

log r ) = Θ( logn
log logn ).

To show the existence of b for an arbitrary algorithm, we use the probabilistic
method. To this end, we will mark a subset T ⊆ N of intervals. For each such marking
T , an associated bid vector bT is defined as follows. For a bidder i corresponding to an
interval on level `, we set bTi = r−` if i ∈ T and bTi = 0.

Let us first consider the bid vector bT̃ induced by a marking T̃ obtained as follows.
On level ` > 0, mark r`−1/2 intervals chosen uniformly at random out of all r` intervals
on this level.

Let E be the event that in every level `− 1 each interval contains a marked interval
of level `. This event occurs with high probability because the probability that a fixed
interval in level `− 1 does not contain a marked interval of level ` is at most(

1− 1

r`−1

)r`−1/2

=

((
1− 1

r`−1

)r`−1)√r
≥ e−

√
r ≤ 1

n2
.

Fix a set T̃ that fulfills E . Observe that every marked interval belongs to an h-clique
of marked intervals. That is, running the algorithm on bT̃ , the average probability of
some i ∈ T̃ being picked at most 1

h . Therefore, randomizing over all possible vectors T̃
respectively bT̃ , the average probability of being picked is at most 1

h + Pr
[
Ē
]
≤ 2

h .
This means, there has to be a partial marking T of the following kind. The marking

is complete on all levels except one level `. In level ` all markings but one are present,
that is, r`−1/2 − 1 are marked. Now, choosing uniformly one of the remaining intervals
on level ` to be marked (and completing T̃ ), the expected probability of being selected
by the algorithm is at most 2

h .
Let b = bT be the bid vector induced by this partial marking. The complete marking

T̃ is obtained by choosing one additional interval from level ` uniformly. Let i be the
random variable indicating the index of this interval, and let Pi be its probability to be
selected by the algorithm. We now have E [Pi] ≤ 2

h . That is, by Markov’s inequality, we
have Pr

[
Pi ≥ 4

h

]
≤ 1

2 and thus Pr
[
Pi <

4
h

]
≥ 1

2 . Observe that by monotonicity Pi < 4
h

implies τi(b−i, 4h ) ≥ r−`. Therefore, we have E
[
τi(b−i,

4
h )
]
≥ 1

2r
−`.

Let S be the set of possible last indices chosen. The bound on E
[
τi(b−i,

4
h )
]

implies∑
i∈S τi(b−i,

4
h ) ≥ 1

2 |S|r
−`. Furthermore, |S| = r`− r`−1/2 + 1 ≥ 1

2r
` for sufficiently large

r. This implies
∑
i∈S τi(b−i,

4
h ) ≥ 1

4

The declared welfare of any feasible solution is bounded by
∑h
`=1 r

`−1/2r−` = h√
r
.

That is, 1
4 ≤ γ

h√
r

and thus γ ≥
√
r

4h = Ω(log n).

5. LOSER INDEPENDENCE AND APPROXIMATION GUARANTEE
Using the concept of permeability also allows us to gain a deeper understanding why
greedy algorithms perform extremely well when used as mechanisms, as shown by
Lucier and Borodin [2010]. The underlying property of greedy algorithms is loser inde-
pendence. Informally spoken this means that a group of losers stays losers, even if they
increase their bids simultaneously while staying under the individual critical value.

We parameterize this property as follows. For a given bid vector b and every set of
losing players T 6⊆ ALG(b) define τT (b−T ) = sup{

∑
i∈T b

′
i | ALG(b) = ALG(b′T , b−T )}.

That is, is τT (b−T ) is the largest sum of bids
∑
i∈T b

′
i that the players in T could submit



without affecting the outcome of the algorithm. An algorithm ALG is β-loser indepen-
dent if for all sets T 6⊆ ALG(b)

τT (b−T ) ≥ 1

β

∑
i∈T

τi(b−i).

Note that for algorithms ALG such that ALG(b) 6= N for at least one b we must have
β ≥ 1, since for T = {i} 6⊆ ALG(b), τT (b−T ) = τi(b−i) and hence the previous inequality
would be violated if β < 1. For consistency, in the pathological case that ALG(b) = N
for all b, we set β = 1. In the full version, we show the following connection between
permeability, loser independence, and the approximation factor.

THEOREM 5.1. Consider an α-approximation algorithm that is β-loser indepen-
dent. Then the algorithm is γ-permeable with γ ≤ αβ.

We also show that if α and β are tight on the same instance, then we get a “reverse”
of the previous theorem showing that γ ≥ αβ.

PROPOSITION 5.2. Consider an α-approximation algorithm ALG that is β-loser
independent. If there exists a vector of bids b such that for a set of players T 6⊆ ALG(b)
and the bids b′i of these players for which τ−T (b−T ) =

∑
i∈T τi(b−i),

τT (b−T ) =
1

β

∑
i∈T

τi(b−i) and
∑

i∈ALG(b)

bi =
1

α

∑
i∈T

b′i.

then the algorithm is γ-permeable with γ ≥ αβ.

Two examples for which α and β are tight on the same instance can be found in the
context of single-minded combinatorial auctions.

The first example is the algorithm that maximizes declared welfare. The instance is
“1-vs-k” with m small bidders and 1 big bidder. The values are one for all players. The
big bidder bids 1 and the small bidders bid 0. The set T comprises all small bidders.
For each i ∈ T we have τi(b−i) = 1, while τT (b−T ) = 1. This gives a β-value of m. The
α-value is 1.

The second example is the greedy algorithm which ranks players by bid divided
through the square root of the bundle size. As before the instance is “1-vs-k” with 1 big
bidder and m small bidders. The values are

√
m and 1. The bids are

√
m and 0. The set

T again comprises all small bidders. Then, for each i ∈ T we have τi(b−i) = 1, while
τT (b−T ) = m. This gives an α-value of

√
m. The β-value is 1.

6. COMPARISON OF EXACT OPTIMIZATION TO GREEDY-BY-VALUE
Another interesting aspect is that for exact declared welfare maximization permeabil-
ity can often be analyzed through the approximation guarantee of the greedy algo-
rithm that ranks players by value, from high to low, and accepts the next player if it
is feasible to do so. The connection is that, up to constant factors, the approximation
guarantee of greedy-by-value provides an upper bound on the permeability γ of exact
optimization.

THEOREM 6.1. If exact optimization over a downward closed set system F is γ-
permeable, then greedy-by-value is a γ + 1-approximation.

PROOF. For a bid vector b, let OPT (b) be the optimal solution and ALG(b) be the
greedy-by-value solution. Without loss of generality, let b1 ≥ b2 ≥ . . . with ties broken
the same way as the greedy-by-value algorithm does. Define b̃ by b̃i = bi if i ∈ ALG(b)
and 0 otherwise.



Let us consider some i 6∈ ALG(b) and ε > 0. We claim that i 6∈ OPT (bi−ε, b̃−i). To this
end, we will assume the contrary and show that OPT (bi − ε, b̃−i) would not be optimal
under these circumstances. By definition of the greedy algorithm, {j ∈ ALG(b) | j <
i} ∪ {i} is infeasible. Therefore, there has to be some k ∈ ALG(b), k < i, such that
k 6∈ OPT (bi − ε, b̃−i). By definition bk > bi − ε. That is,

bi − ε+
∑

j∈OPT (bi−ε,b̃−i)
j 6=i

b̃j < bk +
∑

j∈OPT (bi−ε,b̃−i)
j 6=i

b̃j ≤ bk +
∑
j 6=k

b̃j =
∑

j∈ALG(b)

b̃j .

This is a contradiction.
As a consequence, we get for any i 6∈ ALG(b) that τi(b̃−i) ≥ bi − ε for all ε > 0 and

therefore τi(b̃−i) ≥ bi. That is, we get∑
i∈OPT (b)\ALG(b)

bi ≤
∑

i∈OPT (b)\ALG(b)

τi(b̃−i) ≤ γ
∑

i∈OPT (b̃)

b̃i = γ
∑

i∈ALG(b)

bi ,

and therefore ∑
i∈OPT (b)

bi ≤ (γ + 1)
∑

i∈ALG(b)

bi .

7. EXTENSION BEYOND SMOOTHNESS
We have shown how our characterization settles the Price of Anarchy provable via
smoothness through matching upper and lower bounds. Next we will see how the same
insights can be used to tackle the question of whether or not there is a gap between the
best bound provable via smoothness and the best bound provable via any technique.

In fact, as we show in the full version, for deterministic mechanisms, under very mild
assumptions, there is no gap. Our first result is for mechanisms that charge winning
agents their “critical value”, i.e., the smallest bid τi(b−i) that they would have to win
against bids b−i.

PROPOSITION 7.1. For any deterministic mechanism based on a γ-permeable algo-
rithm that uses critical-value payments there is a pure Nash equilibrium that extracts
at most a 1/γ fraction of the optimal social welfare.

Our second result concerns pay-your-bid mechanisms that are defined for a class of
instances I, where each instance I ∈ I consists of a set of players N and a feasibility
structure F , and that satisfy a mild consistency assumption.

We assume that any instance I = (N,F) ∈ I can be extended to an instance I ′ =
(N ′, F ′) ∈ I as follows: (1) for each player i ∈ N add i and a copy i′ to N ′, and (2)
augment the feasibility structure so that player i and its copy i′ are mutually exclusive,
i.e., i, i′ ∈ S ⇒ S 6∈ F ′, but otherwise play identical roles with respect to the feasibility
structure, i.e., for any set S ⊆ N ′ \ {i}, S ∪ {i} ∈ F ′ ⇔ S ∪ {i′} ∈ F ′ and vice versa. We
refer to I, I ′ as the original instance and its copy, and use i, i′ to refer to the original
player and its copy.

The consistency assumption is that for any instance I = (N,F) with bids b and its
copy I ′ = (N ′,F ′) with bids b′ such that for each pair i, i′ we have max{b′i, b′i′} = bi,
the number of winning bidders from each pair i, i′ under b and b′ is the same and the
winner (if any) from each pair i, i′ under b′ is the bidder with the higher bid.

PROPOSITION 7.2. Consider a consistent deterministic pay-your-bid mechanism for
a class of instances I. Then for the smallest γ such that the underlying algorithm is γ-
permeable for all instances I ∈ I, there exists a pure Nash equilibrium that extracts at
most a 1/γ fraction of the optimal social welfare.



Examples for both results can again be found in the context of single-minded combi-
natorial auctions. First note that combinatorial auctions naturally satisfy the require-
ment on the instances, we just have to duplicate players and let them demand the same
bundle of items. Furthermore, both the algorithm that maximizes declared welfare as
well as the two canonical greedy algorithms satisfy the consistency requirement.

8. CONCLUSION
In this paper we have considered the problem of characterizing algorithms that when
combined with natural payment rules yield mechanisms with a low Price of Anar-
chy. For monotone, single-parameter algorithms we have identified a natural param-
eter, permeability, which provides a tight bound on the Price of Anarchy provable via
smoothness. We have thus reduced the problem of characterizing the best possible
smooth mechanism for a setting to the problem of characterizing the best possible per-
meability achieved by any algorithm for this setting.

We have used this reduction to provide the first lower bounds on the Price of An-
archy provable via smoothness, establishing the optimality of deterministic greedy
algorithms for single-minded combinatorial auctions and of a novel randomized mech-
anism for interval graphs. These lower bounds apply across all algorithms, and, in
particular, do not rely on polynomial-time computability.

Interesting open problems include (a) the extension of our results to non-monotone,
single-parameter algorithms and (b) to provide a similar characterization for multi-
parameter mechanisms.
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