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Many algorithms, that are originally designed without explicitly considering incentive properties, are
later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often
natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting
of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it
is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show
that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy.

The seminal result of Lucier and Borodin [2010] shows that combining a greedy algorithm that is an
α-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy
is O(α). In this paper we significantly extend the class of algorithms for which such a result is available
by showing that this close connection between approximation ratio on the one hand and Price of Anarchy
on the other also holds for the design principle of relaxation and rounding provided that the relaxation is
smooth and the rounding is oblivious.

We demonstrate the far-reaching consequences of our result by showing its implications for sparse pack-
ing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling
salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these
problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either
matches or beats the performance guarantees of known mechanisms.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

Additional Key Words and Phrases: Algorithmic Game Theory, Price of Anarchy, Smoothness

1. INTRODUCTION
Mechanism design — or “reverse” game theory — is concerned with protocols, or mech-
anisms, through which potentially selfish agents interact with one another. The basic
assumption is that the data is held by the agents, who may behave strategically. The
goal is then to achieve outcomes that approximate the social optimum in a wide range
of strategic equilibria.

The most sweeping positive result that one could possibly hope for in this context —
with some professional bias of course — is a general reduction from mechanism design
to algorithm design, showing that mechanism design is just as “easy” as algorithm

É. Tardos is supported in part by NSF grants CCF-0910940 and CCF-1215994, ONR grant N00014-08-1-
0031, a Yahoo! Research Alliance Grant, and a Google Research Grant.
Author addresses: P. Dütting, Department of Mathematics, London School of Economics, Houghton
Street, London WC2A 2AE, UK; T. Kesselheim, Max-Planck-Institut für Informatik, Campus E1 4, 66123
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design. Specifically, one could hope that using algorithms as they are and charging
bidders their respective bids yields mechanisms whose equilibria are close to optimal.

Why would this be appealing? Such a result would make the entire toolbox of algo-
rithm design available to mechanism design, significantly broadening the tools cur-
rently available. It would also “hide” the incentives aspect from the designer, who
would then no longer need to worry about possible manipulations through the agents.
He could simply focus on the problem of computing near optimal solutions for the
claimed input. Finally, the resulting mechanisms would enjoy a simplicity well beyond
that found in most state-of-the art mechanisms.

Our goal in this paper is to identify general algorithm design principles that work
well when used as mechanisms. We cannot expect this to be the case for all algorithms.
Identifying algorithm design principles that automatically work well as mechanisms
would, in some sense, give us the vocabulary to which we — as algorithm designers
— should confine ourselves if we expect that our algorithm will be used in strategic
environments. Specifically, it would equip us with the tools to design simple and robust
mechanisms for such settings.

Lucier and Borodin [2010] showed that greedy algorithms have this property: Any
equilibrium of a greedy algorithm that is an α-approximation algorithm is within O(α)
of the optimal solution. Our main result is to show that the common design principle
of relaxation and rounding as in — relax integer linear program to fractional domain,
solve relaxation to optimality, and then convert into integer solution via randomized
rounding — also preserves the approximation guarantee as Price of Anarchy guaran-
tee provided that the relaxation is smooth and the rounding process is oblivious (more
on this below).

This result has — as we show — far-reaching consequences in mechanism design:
It leads to novel simple, yet near-optimal mechanisms for sparse packing integer pro-
grams, such as multi-unit auctions and generalized matching, for the maximum trav-
eling salesman problem, for combinatorial auctions and for single source routing prob-
lems. In all cases we obtain Price of Anarchy bounds that match or beat known Price
of Anarchy guarantees, or they are the first non-trivial guarantees for the respective
problem.

1.1. Our Contributions
Our results concern the algorithmic blueprint of relaxation and rounding (see, e.g.,
[Vazirani 2001]). In this approach a problem Π is relaxed to a problem Π′, with the
purpose of rendering exact optimization computationally tractable. Having found the
optimal relaxed solution x′, another algorithm derives a solution x to the original prob-
lem. This process is typically called rounding. The best-known example are integer
linear programs which are relaxed to fractional domains.

Many rounding schemes in text books as well as highly sophisticated ones are obliv-
ious. That is, they do not require knowledge of the objective function. Up to this point,
to the best of our knowledge, this property—though wide-spread—has never proven
useful. In this paper, we show that oblivious rounding schemes preserve bounds on
the Price of Anarchy. That is, applying an α-approximate oblivious rounding scheme
on a problem with a Price of Anarchy bound β, the combined mechanism has Price of
Anarchy at most O(αβ).

We thus translate the relax-and-round approach from algorithm design into mecha-
nism design: If we relax a problem into a problem with Price of Anarchy β and round
the solution to the relaxed problem with an α-approximate oblivious rounding scheme,
the resulting mechanism has a Price of Anarchy of O(αβ). The bound does not only ap-
ply to Nash equilibria, but also extends to the Bayesian setting as well as to learning
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outcomes (coarse correlated equilibria). See Section 9 for discussion on the existence
and computational complexity of finding such outcomes.

Main Result. Our main result leverages the power of the smoothness framework of
Roughgarden [2009, 2012] and Syrgkanis and Tardos [2013].

At the heart of this framework is the notion of a (λ, µ)-smooth mechanism, where
λ, µ ≥ 0. The main result is that a mechanism that is (λ, µ)-smooth achieves a Price of
Anarchy of β(λ, µ) = max(1, µ)/λ with respect to a broad range of equilibrium concepts
including learning outcomes. Furthermore, the simultaneous and sequential composi-
tion of (λ, µ)-smooth mechanisms is again (λ, µ)-smooth. Ideally, λ = 1 and µ ≤ 1 in
which case this result tells us that all equilibria of the mechanism are socially optimal;
otherwise, if λ < 1 or µ > 1, then this result tells us which fraction of the optimal social
welfare the mechanism is guaranteed to get at any equilibrium.

The other crucial ingredient to our main result is the notion of an α-approximate
oblivious rounding scheme, where α ≥ 1. This is a (possibly randomized) rounding
scheme for translating a solution x′ to the relaxed problem Π′ into a solution x to the
original problem Π so that for all possible valuation profiles each agent is guaranteed
to get, in expectation, a 1/α-fraction of the value that it would have had for the solution
to the relaxed problem.

Clearly an α-approximate oblivious rounding scheme, when combined with opti-
mally solving the relaxed problem, leads to an approximation ratio of α. We show that
it also approximately preserves the Price of Anarchy of the relaxation. We focus on pay-
your-bid mechanisms for concreteness. Our result actually applies to a broad range of
mechanisms and can also be extended to include settings where the relaxation is not
solved optimally; we discuss these extensions in Section 8.

THEOREM 1.1 (MAIN THEOREM, INFORMAL). Consider problem Π and a relax-
ation Π′. Suppose the pay-your-bid mechanism M for Π is derived from the pay-your-bid
mechanism M ′ for Π′. If M ′ is (λ, µ)-smooth, then M is (λ/(2α), µ)-smooth.

COROLLARY 1.2. The Price of Anarchy established via smoothness of mechanism
M ′ of β translates into a smooth Price of Anarchy bound for mechanism M of 2αβ
extending to both Bayesian Nash equilibria and learning outcomes.

Our main theorem can be strengthened if the relaxation satisfies a slightly stronger
smoothness condition, also parametrized by λ and µ, which all our application do. In
this case we can show that the derived mechanism is (λ/α, µ)-smooth; and the corollary
would read “a Price of Anarchy of β translates into a Price of Anarchy of αβ.”

Applications. We demonstrate the far-reaching consequences of our result by applying
it to a broad range of optimization problems. For each of these problems we show the
existence of a smooth relaxation and the existence of an oblivious rounding scheme.
We note that in all of our applications, it is important to use the relaxation to show
smoothness of the problem. For example, optimally solving the original (integer) prob-
lem would give a very high Price of Anarchy.
Sparse Packing Integer Programs. The first problem we consider are multi-unit auc-
tions with n bidders and m items, where bidders have unconstrained valuations.
The underlying optimization problem has a natural LP relaxation, which we show is
(1/2, 1)-smooth. Using the 8-approximate oblivious rounding scheme of [Bansal et al.
2010], our framework yields a constant PoA. This is quite remarkable as solving the
integral optimization problem leads to a PoA that grows linearly in n and m.

We then consider the generalized assignment problem in which n bidders have unit-
demand valuations for a certain amount of one of k services and allocations of services
to bidders must respect the limited availability of each service. For this problem we
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also show (1/2, 1)-smoothness, and use the 8-approximate oblivious rounding scheme
of [Bansal et al. 2010] to obtain a constant PoA.

Both these results are in fact special cases of a general result regarding sparse pack-
ing integer programs (PIP) that we show. Namely, the pay-your-bid mechanism that
solves the canonical relaxation of a PIP with column sparsity d is (1/2, d + 1)-smooth.
Multi-unit auctions and the generalized assignment problem have d = 1; combina-
torial auctions in which each bidder is interested in at most d items simultaneously
have d ≥ 1. For general PIPs the rounding scheme of [Bansal et al. 2010] is O(d)-
approximate. We get a PoA of O(d2).

Maximum Traveling Salesman. Our second application is the maximization variant of
the classic traveling salesman problem (max-TSP). We think of the problem as a game
where each edge e has a value for being included, and the goal of the mechanism is
to select a TSP of maximum total value. The classic algorithm for this problem is a
2-approximation [Fisher et al. 1979]. It proceeds by computing a cycle cover, dropping
an edge from each cycle, and connecting the resulting paths in an arbitrary manner to
obtain a solution. We prove this can be thought off as a 2-approximate oblivious round-
ing scheme and show, through a novel combinatorial argument, that the relaxation is
(1/2, 3)-smooth. We thus obtain a Price of Anarchy of 12.

The best approximation guarantee for max-TSP is a 3/2-approximation due to Ka-
plan et al. [2003]. The same approximation ratio is achieved by a (much simpler) algo-
rithm of Paluch et al. [2012]. We show that this algorithm — just as the basic algorithm
— can be interpreted as a relax-and-round algorithm. Generalizing the arguments for
the basic algorithm to the (different) relaxation used in this interpretation, we show
that this algorithm achieves a Price of Anarchy that is by a factor 3/4 better than the
Price of Anarchy of the basic algorithm.

These examples are especially interesting as they show how a seemingly combina-
torial algorithm can be re-stated within our framework. They also represent the first
non-trivial PoA bounds for this problem.

Combinatorial Auctions. We also consider the “canonical” mechanism design problem
of combinatorial auctions in which valuations are restricted to come from a certain
class. Our first result concerns fractionally subadditive, or XOS, valuations [Lehmann
et al. 2006]. We show that the pay-your-bid mechanism for the canonical LP relaxation
is (1/2, 1)-smooth. Using Feige’s ingenious e/(e − 1)-approximate oblivious rounding
scheme [Feige 2009], our main result implies an upper bound on the Price of Anarchy
of 4e/(e− 1).

We then show how to extend this result to the recently proposed hierarchy ofMPH-
k valuations [Feige et al. 2014]. Levels of the hierarchy correspond to the degree of
complementarity in a given function. The lowest level k = 1 coincides with the class
of XOS/fractionally subadditive valuations; the highest level k = m can be shown to
comprise all monotone valuation functions. We show that for MPH-k valuations the
LP relaxation is (1/2, k + 1) smooth. Together with the O(k)-approximate oblivious
rounding scheme of [Feige et al. 2014] we obtain a Price of Anarchy of Θ(k2).

These results nicely complement the recent work on “simple auctions” such as
[Christodoulou et al. 2008; Bhawalkar and Roughgarden 2011; Feldman et al. 2013;
Dütting et al. 2013; Roughgarden 2014], answering an open question of Babaioff et al.
[2014] regarding the Price of Anarchy of direct mechanism based on approximation al-
gorithms in these settings. The advantage of having a direct mechanism for this prob-
lem is that one can consider simple bidding strategies (such as bidding half the value)
to establish the performance guarantees, whereas in indirect mechanisms such as com-
binatorial auctions with item bidding the computational effort is effectively shifted to
the bidders.
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Single Source Unsplittable Flow. The final problem that we consider are multi-
commodity flow (MCF) problems with a single source (or target). In these problems
we are given a capacitated, directed network and a set of requests consisting of a tar-
get (a source) and a demand, corresponding to requests of, say different information,
held at the source. The goal is to maximize the total demand routed (or the total value
of the demand routed), subject to feasibility. We assume each player has a demand for
some flow to be routed from a shared source to a terminal specific to the player, and
the player has a private value for routing this flow.

For this problem we show that the natural LP relaxation is (1/2, 1)-smooth. A (1+ε)-
approximate oblivious rounding scheme for high enough capacities is obtained through
an adaptation of the “original” randomized rounding algorithm of [Raghavan 1988;
Raghavan and Thompson 1987]. This yields a PoA of 2(1 + ε).

An interesting feature of this result is that the LP can be solved greedily through a
variant of Ford-Fulkerson which allows us to exploit the known connection to smooth-
ness [Lucier and Borodin 2010; Syrgkanis and Tardos 2013]. Crucially, the reference
to these results has to be on the fractional level, as a greedy procedure on the integral
level achieves a significantly worse approximation guarantee.

1.2. Related Work
Our work is closely related to the literature on so-called “back-box reductions”, which
has led to some of the most impressive results in algorithmic mechanism design (such
as [Lavi and Swamy 2005; Briest et al. 2005; Dughmi and Roughgarden 2014; Dughmi
et al. 2011; Babaioff et al. 2010, 2013]). This approach takes an algorithm, and aims
to implement the algorithm’s outcome via a game. To this end it typically modifies the
algorithm and adds a sophisticated payment scheme. Our approach is different in that
we consider an algorithm without any modification, introduce a simple payment rule,
such as the “pay your bid” rule, and understand the expected outcomes of the resulting
game.

Lavi and Swamy [2005] use randomized meta rounding [Carr and Vempala 2002]
to turn LP-based approximation algorithms for packing domains into truthful-in-
expectation mechanisms. Our result is similar in spirit as it demonstrates the implica-
tions of obliviousness for non-truthful mechanism design. The property that we need,
however, is less stringent and shared by most rounding algorithms. Another important
difference is that our approach is not limited to packing domains.

Briest et al. [2005] show how pseudo-polynomial approximation algorithms for
single-parameter problems can be turned into a truthful fully polynomial-time approx-
imation schemes (FPTAS). Dughmi and Roughgarden [2014] prove that every welfare-
maximization problem that admits a FPTAS and can be encoded as a packing problem
also admits a truthful-in-expectation randomized mechanism that is an FPTAS. Un-
like our approach these approaches are limited to single-parameter problems, or to
multi-parameter problems with packing structure.

Dughmi et al. [2011] present a general framework that also looks at the fractional
relaxation of the problem. They show that if the rounding procedure has a certain prop-
erty, which they refer to as convex rounding, then the resulting algorithm is truthful.
They instantiate this framework to design a truthful-in-expectation mechanism for
CAs with matroid-rank-sum valuations (which are strictly less general than submod-
ular). The main difference to our work is that standard rounding procedures are often
oblivious but typically not convex.

Babaioff et al. [2010, 2013] show how to transform a monotone or cycle-monotone
algorithm into a truthful-in-expectation mechanism using a single call to the algo-
rithm. The resulting mechanism coincides with the algorithm with high probability.
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This work differs from ours in that it only applies to monotone or cycle-monotone algo-
rithms.

By insisting on truthfulness, or truthfulness-in-expectation, as a solution concept,
all these approaches face certain natural barriers to how good they can get (see, e.g.,
[Papadimitriou et al. 2008; Chawla et al. 2012]). In addition, they typically do not lead
to simple, practical mechanisms. For example, despite running times technically being
polynomial, these mechanisms require far more computational effort than standard
approximation algorithms for the underlying optimization problem. In some cases, the
reduction yields mechanisms in which the approximation guarantee is tight on every
single instance (not only in the worst case). That is, even when the optimization prob-
lem is trivial, the mechanism sacrifices the solution quality for incentives.

1.3. Organization
We formally define our model in Section 2. Section 3 presents the meta-theorems with
proofs. Sections 4 through 7 discuss applications. We only give proof sketches for these
results here. Details can be found in the full version. Section 8 presents possible ex-
tensions of our framework. We conclude with a discussion or our results and its impli-
cations in Section 9.

2. PRELIMINARIES
Algorithm Design Basics. We consider maximization problems Π in which the goal is to
determine a feasible outcome x ∈ Ω that maximizes total weight given by w(x) for non-
negative a weight function w : Ω→ R≥0. A potentially randomized algorithmA receives
the functions w as input and computes an output A(w) ∈ Ω. The algorithm is an α-
approximation algorithm, for α ≥ 1, if for all weights w, E [w(A(w))] ≥ 1

α ·maxx∈Ω w(x).
We are interested in relax-and-round algorithms. These algorithms first relax the

problem Π to Π′ by extending the space of feasible outcomes to Ω′ ⊇ Ω and generalizing
weight functions w to all x ∈ Ω′. They compute an optimal solution x′ ∈ Ω′ to the
relaxed problem. Then a solution x ∈ Ω of the original problem is derived based on
x′ ∈ Ω′, typically via randomized rounding.

A rounding algorithm is oblivious if it does not require knowledge of the actual ob-
jective function w, beyond the fact that x′ was optimized with respect to w. Formally, a
rounding scheme is an α-approximate oblivious rounding scheme if, given some relaxed
solution x′, it computes a solution x such that for all w, E [w(x)] ≥ 1

αw(x′). Clearly, a
relax-and-round algorithm based on an α-approximate oblivious rounding scheme is
an α-approximation algorithm.

Mechanism Design Basics. Our results apply to general multi-parameter mechanism
design problems Π in which agents N = {1, . . . , n} interact to select an element from
a set Ω of outcomes. Each agent has a valuation function vi : Ω → R≥0. We use v for
the valuation profile that specifies a valuation for each agent, and v−i to denote the
valuations of the agents other than i. The quality of an outcome x ∈ Ω is measured in
terms of its social welfare

∑
i∈N vi(x).

We consider direct mechanisms M that ask the agents to report their valuations.
We refer to the reported valuations as bids and denote them by b. The mechanism
uses outcome rule f to compute an outcome f(b) ∈ Ω and payment rule p to compute
payments p(b) ∈ R≥0. Both the computation of the outcome and the payments can
be randomized. We are specifically interested in pay-your-bid mechanisms, in which
agents are asked to pay what they have bid on the outcome they get. In other words, in
a pay-your-bid mechanismM = (f, p), pi(b) = bi(fi(b)).We assume that the agents have
quasi-linear utilities and that they are risk neutral. That is, we assume that agent i’s
expected utility in mechanism M = (f, p) is given by ui(b, vi) = E [vi(f(b))]−E [pi(b)] .
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For the game-theoretic analysis we distinguish two settings. In the complete infor-
mation setting agents know each others’ valuations, and a potentially randomized bid
profile b that may depend on v is a mixed Nash equilibrium if for all agents i ∈ N and
possible deviations b′i that may depend on v, Eb[ui(b, vi)] ≥ Eb′i,b−i

[ui((b
′
i, b−i), vi)]. In

the incomplete information setting valuations are drawn from independent distribu-
tions Di, and each agent i ∈ N knows its own valuation vi and the distributions D−i
from which the other agents valuations are drawn. A mixed Bayes-Nash equilibrium
is a potentially randomized bid profile bi that may depend on this agent’s valuation vi
and the distributions D−i from which the other agents’ valuations are drawn such that
for all agents i ∈ N and potential deviations b′i which are also allowed to depend on vi
and D−i, Eb,v−i

[ui(b, vi)] ≥ Eb′i,b−i,v−i
[ui((b

′
i, b−i), vi)].

Price of Anarchy. We evaluate the quality of mechanisms by their Price of Anarchy. The
Price of Anarchy with respect to Nash equilibria (PoA) is the worst ratio between the
optimal social welfare and the expected welfare in a mixed Nash equilibrium. Simi-
larly, the Price of Anarchy with respect to Bayes-Nash equilibria (BPoA) is the worst
ratio between the optimal expected social welfare and the expected welfare in a mixed
Bayes-Nash equilibrium. Formally, define NASH(v) and BNASH(D) as the set of all
mixed Nash and mixed Bayes Nash equilibria respectively. Then,

PoA = max
v

max
b∈NASH(v)

max
x∈Ω

∑
i∈N vi(x)

E
[∑

i∈N vi(f(b))
] andBPoA = max

D
max

b∈BNASH(D)

max
x∈Ω

E
[∑

i∈N vi(x)
]

E
[∑

i∈N vi(f(b))
] .

The Smoothness Framework. An important ingredient in our result is the following no-
tion of a smooth mechanism of Syrgkanis and Tardos [2013]. A mechanism is (λ, µ)-
smooth for λ, µ ≥ 0 if for all valuation profiles v and all bid profiles b there exists a
possibly randomized strategy b′i for every agent i that may depend on the valuation
profile v of all agents and the bid bi of that agent such that∑

i∈N
E [ui((b

′
i, b−i), vi)] ≥ λ ·max

x∈Ω

∑
i∈N

vi(x)− µ ·
∑
i∈N

E [pi(b)] .

THEOREM 2.1 (SYRGKANIS AND TARDOS [2013]). If a mechanism is (λ, µ)-smooth
and agents have the possibility to withdraw from the mechanism, then the expected so-
cial welfare at any mixed Nash or mixed Bayes-Nash equilibrium is at least λ/max(µ, 1)
of the optimal social welfare.

As shown in [Syrgkanis and Tardos 2013], (λ, µ)-smoothness also implies a bound
of max(µ, 1)/λ on the Price of Anarchy for correlated equilibria, also known as learn-
ing outcomes. Furthermore, the simultaneous and sequential composition of multiple
(λ, µ)-smooth mechanisms is again (λ, µ)-smooth. For details, on the precise definitions
and statements beyond Nash equilibria, see [Syrgkanis and Tardos 2013].

In fact, our smoothness proofs show an even slightly stronger property, semi-
smoothness as defined by [Caragiannis et al. 2015]: the deviation strategy b′i only
depends on the respective agent’s valuation vi, but not on the agent’s bid bi or the
other agents’ valuations v−i. Therefore, the same Price of Anarchy bounds also apply
to coarse correlated equilibria and Bayes-Nash equilibria with correlated types.

3. OBLIVIOUS ROUNDING AND SMOOTH RELAXATIONS
In this section, we show our main theorem. We consider mechanisms for a problem Π
that are constructed as follows. First, one computes an optimal solution x′ to a relaxed
problem Π′ that maximizes the declared welfare. That is, it maximizes

∑
i∈N bi(x

′).
Afterwards, an α-approximate oblivious rounding scheme is applied to derive a feasible
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solution x to the original problem Π. Each bidder is charged bi(x), i.e., his declared
value of this outcome.

THEOREM 3.1 (MAIN RESULT). Consider problem Π and a relaxation Π′. Given a
pay-your-bid mechanismM ′ = (f ′, p′) that is (λ, µ)-smooth where f ′ is an exact declared
welfare maximizer for the relaxation Π′. Then a pay-your-bid mechanism M = (f, p) for
the original problem Π that is obtained from the relaxation through an α-approximate
oblivious rounding scheme is (λ/(2α), µ)-smooth.

In many applications, smoothness is shown by the deviation strategy of reporting
half one’s true value. First we show that, while generally the deviation strategy b′i can
be arbitrary, it is sufficient to consider only this deviation b′i = 1

2vi. We exploit the fact
that f ′ performs exact optimization.

LEMMA 3.2. Given a pay-your-bid mechanism M = (f, p) that is (λ, µ)-smooth
where f is an exact declared welfare maximizer. Then M is (λ/2, µ)-smooth for devi-
ations to half the value. That is, for all bid vectors b and bids b′i = 1

2vi for all i ∈ N ,∑
i∈N ui((b

′
i, b−i), vi) ≥ λ

2OPT (v)− µ
∑
i∈N pi(b).

PROOF. We first use (λ, µ)-smoothness of M . For any valuations, there have to be
deviation bids fulfilling the respective conditions. So, in particular, let us pretend that
each bidder i has valuation 1

2vi. By smoothness, there are bids b′′i against b such that∑
i∈N

ui

(
(b′′i , b−i),

1

2
vi

)
≥ λOPT

(v
2

)
− µ

∑
i∈N

pi(b) . (1)

The next step is to relate the sum of utilities
∑
i∈N ui((b

′
i, b−i), vi) =∑

i∈N
1
2vi(fi(b

′
i, b−i)) =

∑
i∈N b

′
i(fi(b

′
i, b−i)) that agents with valuations v get in M when

they unilaterally deviate from b to b′i to the sum of utilities
∑
i∈N ui((b

′′
i , b−i),

1
2vi) that

they get in M with valuations 1
2v and unilateral deviations from b to b′′i .

The allocation function f optimizes exactly over its outcome space. Therefore, it can
be used to implement a truthful mechanism MVCG = (f, pVCG) by applying VCG pay-
ments. As VCG payments are non-negative, we get

ui((b
′
i, b−i), vi) =

1

2
vi(f(b′i, b−i)) = b′i(f(b′i, b−i)) ≥ b′i(f(b′i, b−i))− pVCG(b′i, b−i) .

Observe that the latter term is exactly the utility bidder i receives in MVCG if his
valuation and bid is b′i. As MVCG is truthful, this term is maximized by reporting the
true valuation. In other words, it can only decrease, if bidder i changes his bid to b′′i
(keeping the valuation b′i). That is,

ui((b
′
i, b−i), vi) ≥ b′i(f(b′i, b−i))− pVCG(b′i, b−i) ≥ b′i(f(b′′i , b−i))− pVCG

i (b′′i , b−i) .

Finally, we use that pVCG is no larger than p because VCG payments never exceed bids,
i.e., pVCG

i (b′′i , b−i) ≤ b′′i (f(b′′i , b−i)) = pi(b
′′
i , b−i). By furthermore changing b′i back to 1

2vi,
we get

ui((b
′
i, b−i), vi) ≥

1

2
vi(f(b′′i , b−i))− pi(b′′i , b−i) = ui

(
(b′′i , b−i),

1

2
vi

)
.

Summing this inequality over all i ∈ N and combining it with inequality (1), we get∑
i∈N

ui((b
′
i, b−i), vi) ≥ λOPT

(v
2

)
− µ

∑
i∈N

pi(b) =
λ

2
OPT (v)− µ

∑
i∈N

pi(b) .
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It remains to show that smoothness of the relaxation for deviations to half the value,
implies smoothness of the derived mechanism for the original problem. As it is often
possible to directly show smoothness for deviations to half the value, we state the
following stronger version of Theorem 3.1 for relaxations that are (λ, µ)-smooth for
deviations to half the value.

Theorem 3.1 follows by first using Lemma 3.2 to argue that unconstrained (λ, µ)-
smoothness of the relaxation implies (λ/2, µ)-smoothness for deviations to half the
value and then using Theorem 3.1′ to show that the derived mechanism is (λ/(2α), µ)-
smooth.

THEOREM 3.1′ (STRONGER VERSION OF MAIN THEOREM). If the pay-your-bid
mechanism M ′ = (f ′, p′) that solves the relaxation Π′ optimally is (λ, µ)-smooth for
deviations to b′i = 1

2vi, then the pay-your-bid mechanism M = (f, p) for Π that is ob-
tained from the relaxation through an α-approximate oblivious rounding scheme is
(λ/α, µ)-smooth.

PROOF. For any bid vector b, denote the utility of agent i ∈ N under mechanism
M = (f, p) by ui(b, v) = vi(fi(b))− pi(b) and under mechanism M ′ = (f ′, p′) by u′i(b, v) =
vi(f

′
i(b))− p′i(b).

For each bidder i, we consider the unilateral deviation by b′i = 1
2vi. As M is a pay-

your-bid mechanism, bidder i’s utility when bidding b′i against b−i can be expressed
by

E [ui((b
′
i, b−i), vi)] = E [vi(f(b′i, bi))− pi(b′i, b−i)] =

1

2
E [vi(f(b′i, b−i))] .

Next we use that the outcome f(b′i, b−i) is derived from f ′(b′i, b−i) by applying an α-
approximate oblivious rounding scheme by considering the weight function in which
wi = vi for all i and concluding that E [vi(f(b′i, b−i))] ≥ 1

αvi(f
′(b′i, b−i)). That is, for

bidder i’s utility, we get

E [ui((b
′
i, b−i), vi)] ≥

1

2α
vi(f

′(b′i, b−i)) =
1

α
u′i((b

′
i, b−i), vi) ,

where the last step uses that M ′ is a pay-your-bid mechanism as well.
Next, we apply the fact that M ′ is (λ, µ)-smooth for deviations to b′i = 1

2vi. We get for
the sum of utilities in M that∑

i∈N
E [ui((b

′
i, b−i), vi)] ≥

1

α

∑
i∈N

u′i((b
′
i, b−i), vi) ≥

1

α

(
λOPT (v)− µ

∑
i∈N

p′i(b)

)
.

To bound the terms p′i(b), we use once more the fact that we are applying an α-
approximate oblivious rounding scheme, this time to derive f(b) from f ′(b) and consid-
ering the weight function in which wi = bi for all i. This implies

p′i(b) = bi(f
′
i(b)) ≤ αE [bi(fi(b))] = αE [pi(b)] .

Overall, we get ∑
i∈N

E [ui((b
′
i, b−i), vi)] ≥

1

α
λOPT (v)− µ

∑
i∈N

pi(b) ,

as claimed.

4. SPARSE PACKING INTEGER PROGRAMS
In a sparse packing integer program (PIP) each bidder i can be served in K possi-
ble ways. The fact whether bidder i gets option k is represented by a binary variable
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xi,k ∈ {0, 1}. Each bidder i can only get one option, that is
∑
k∈[K] xi,k ≤ 1 for each i.

Furthermore, matrix A and vector c represent packing constraints between the bid-
ders, requiring that Ax ≤ c. Each bidder’s valuation depends on the option that he
is served by. That is vi can be expressed as vi(x) =

∑
k∈[K] vi,kxi,k. The goal is to find

max
∑
i∈N vi(x) subject to feasibility.

We consider the relaxation of this integer program in which the binary variables
xi,k ∈ {0, 1} are replaced with non-negative variables xi,k ≥ 0. The interpretation
is that xi,k is a fractional allocation of option k to bidder i, and no bidder i can be
assigned more than the fractional equivalent of one option. This relaxation is a LP and
can therefore be solved in polynomial time.

The column sparsity d is the maximum number of non-zero entries in a single column
of A. Formally, for each variable xj,k, let Sj,k be the set of constraints in A with a non-
zero coefficient, that is, Sj,k = {` | A`,j,k 6= 0}. Now d = maxj,k|Sj,k|. Examples with
d = 1 are multi unit-auctions with unconstrained valuations or unit demand auctions,
where each player wants at most one item, possibly with player dependent capacity
constraints, like makespan constraints in a generalized assignment problem; or more
generally, combinatorial auctions in which each bidder is interested in bundles of at
most d items are an example with d ≥ 1.

THEOREM 4.1. There is an oblivious rounding based, pay-your-bid mechanism for
d-sparse packing integer programs that achieves a Price of Anarchy of 32 for d = 1 and
of 16d(d+ 1) for general d.

PROOF SKETCH. An 8d-approximate oblivious rounding scheme is available from
[Bansal et al. 2010]. We show that the LP relaxation of a d-sparse PIP is (1/2, d + 1)-
smooth for deviations to b′i = 1/2vi. Theorem 3.1′ then implies the Price of Anarchy
guarantee.

To establish smoothness we first show that the mechanism is ( 1
2 , µ)-smooth for devia-

tions to b′i = 1
2vi with µ defined as follows. Denoting the optimal declared welfare for ca-

pacity vector c and bid vector b by W b(c), we define µ > 0 to be the smallest value such
that for all feasible allocations x̄,

∑
i∈N (W b−i(c)−W b−i(c−A(x̄i, 0))) ≤ µ

∑
i∈N W

b(c).
We then show that µ = (d + 1) is a valid solution to this problem through the fol-

lowing scaling argument: Construct from W b(c) a feasible allocation x̂−i for capacities
c − A(x̄i, 0) by setting x̂−ij,k = (1 − δij,k)x̂j,k, where δij,k = max`∈Sj,k

(A(x̄i,0))`
c`

. Then for
all j and k,

∑
i δ
i
j,k ≤

∑
i

∑
`∈Sj,k

(A(x̄i,0))`
c`

=
∑
`∈Sj,k

∑
i

(A(x̄i,0))`
c`

≤ |Sj,k| ≤ d and
therefore

∑
i 6=j,i∈N (1 − δij,k) ≥ n − d − 1. It follows that

∑
i∈N W

b−i(c − A(x̄i, 0)) ≥∑
j∈N

∑
i 6=j,i∈N

∑
k bj,k

(
1− δij,k

)
x̂j,k ≥ (n−d−1)W b(c), and therefore

∑
i∈N (W b−i(c)−

W b−i(c−A(x̄i, 0))) ≤ (d+ 1)W b(c).

In stark contrast, as we show in the full version, the mechanism that solves the
integral problem optimally has an unbounded Price of Anarchy even when d = 1.

5. SINGLE SOURCE UNSPLITTABLE FLOW
We consider the single source weighted unsplittable multi-commodity flow problem in
which we are given a graph G = (V,E) with edge capacities ce for each edge e ∈ E.
All bidders share a source node s and each bidder i has a sink node ti. He asks for a
path connecting s and ti fulfilling his demand di. His value for this is vi, and he has
no value for less flow than his demand. We assume that the sink ti and demand di for
each player is common knowledge, so the player’s bid is a claimed value, which will be
denoted by bi.



Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round 11

Let Pi be the paths connecting s and ti. For each P ∈ Pi, we have a variable fi,P
denoting the amount of flow along path P . The problem requires single path routing,
that is, all the di flow satisfying player i’s demand must be carried by a single path. We
use the following standard LP relaxation that maximizes

∑
i∈N

∑
P∈Pi

bifi,P subject to∑
i∈N

∑
P∈Pi:e∈P fi,P ≤ ce for all e ∈ E and

∑
P∈Pi

fi,P ≤ di for all i ∈ N .
Substituting fi,P by dix̄i,P , we get an LP formulation in the spirit of Section 4. How-

ever, this LP is not necessarily sparse, as the column sparsity d corresponds to the
maximum path length. Nevertheless we are able to establish the following theorem.

THEOREM 5.1. Suppose the minimum edge capacity is by a logarithmic factor
larger than the maximum demand, i.e., mine∈E ce ≥ cε−1 log |E|maxi∈N di for some ε > 0
and an appropriate constant c > 0. Then there is an oblivious rounding based, pay-your-
bid mechanism for the single source unsplittable flow problem with Price of Anarchy at
most 2(1 + ε).

PROOF SKETCH. For the setting considered here Raghavan and Thompson [Ragha-
van 1988; Raghavan and Thompson 1987] present a (1 + ε)-approximate oblivious
rounding scheme. For smoothness we show that the LP relaxation can be solved exactly
using a loser-independent greedy heuristic: route flow using augmenting path giving
priority to terminals with higher bi/di value. This lets us leverage the known connec-
tion between loser-independence and smoothness [Lucier and Borodin 2010; Syrgkanis
and Tardos 2013]. Specifically, we show (1/2, 1)-smoothness for deviations to b′i = 1

2vi.
The Price of Anarchy bound then follows by Theorem 3.1′.

Importantly, the reference to greedy is on the fractional level, as the greedy algo-
rithm for the integral problem can be as bad as an Ω(

√
|E|) (see [Kleinberg 1996]).

Also, as we show in the full version solving the integral problem optimally again leads
to an unbounded PoA, even if there is a single source, a single target and just one unit
capacity edge between the two.

6. MAX-TSP
In the asymmetric maximization version of the traveling salesperson problem, one
is given a complete digraph G = (V,E) with non-negative weights (we)e∈E . Players
are the edges with value we for being selected, and the mechanism aims to select a
Hamiltonian cycle C that maximizes

∑
e∈C we. We show how existing combinatorial

algorithms for this problem can be interpreted as relax-and-round algorithms, and
derive the following theorem.

THEOREM 6.1. There is a pay-your-bid mechanism for the maximum traveling
salesman problem based on oblivious rounding that achieves a Price of Anarchy of 9.

PROOF SKETCH. The algorithm of Fisher et al. [1979] “rounds” the problem of find-
ing a Hamiltonian cycle to the problem of finding a cycle cover as follows: It first deter-
mines a maximum-weight cycle cover, then drops the minimum weight edge from each
cycle, and connects the resulting vertex-disjoint paths in an arbitrary way to obtain a
Hamiltonian cycle. This can be turned into a oblivious rounding scheme by dropping
an random edge from each cycle. The resulting rounding scheme is a 2-approximation
as each edge in the cycle cover is included in the final outcome with probability at least
one half.

To be able to apply Theorem 3.1′ and obtain the Price of Anarchy bound it remains
to show that the pay-your-bid mechanism that finds a cycle cover is (1/2, 3)-smooth.
Our proof of this follows a similar pattern as the smoothness proof in Theorem 4.1, but
unlike this proof it is not a scaling argument. Rather for edges e not in the optimal cycle
cover, we consider the social cost of adding e to the solution. The key idea is to show
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that for any cycle cover C ′ this total net social cost is bounded by 3 times the optimal
declared welfare by modifying the optimal cycle cover to force each of the edges e ∈ C ′
into the solution one-by-one.

In the full version, we show how to strengthen this result to a Price of Anarchy of 9
by using the algorithm of Paluch et al. [2012] instead.

7. COMBINATORIAL AUCTIONS
In this section, we consider combinatorial auctions (CAs). In a CA,m items are sold to n
bidders. Each item is allocated to at most one bidder and each bidder i has a valuation
vi(S) for the subset S ⊆ [m] of items he receives. The canonical relaxation as a configu-
ration LP uses variables xi,S ∈ [0, 1] representing the fraction that bidder i receives of
set S. The goal is to maximize

∑
i∈N

∑
S⊆[m] bi(S)x̄i,S s.t.

∑
i∈N

∑
S:j∈S xi,S ≤ 1 for all

j ∈ [m] and
∑
S xi,S ≤ 1 for all i ∈ N .

For arbitrary valuation functions, only very poor approximation factors can be
achieved for the optimization problem. Therefore, we focus on XOS or fractionally sub-
additive valuations. That is, each valuation function vi has a representation of the
following form. There are values v`i,j ≥ 0 such that vi(S) = max`

∑
j∈S v

`
i,j . Feige et al.

[2014] very recently generalized the class of XOS functions toMPH-k, where XOS is
precisely the case k = 1. A valuation function vi belongs to class MPH-k if there are
values v`i,T ≥ 0 such that vi(S) = max`

∑
T⊆S,|T |≤k v

`
i,T .

THEOREM 7.1. There is a pay-your-bid mechanism that is based on oblivious
rounding and achieves a Price of Anarchy of 4 e

e−1 for XOS-valuations and of O(k2)

forMPH-k-valuations.

PROOF SKETCH. For generalMPH-k-valuations Feige et al. [2014] present a O(k+
1)-approximate rounding scheme; a better constant of e

e−1 for the special case XOS
can be achieved via the rounding scheme described in Feige [2009]. Both schemes are
oblivious. Regarding smoothness we show that the configuration LP is (1/2, k + 1)-
smooth for deviations to b′i = 1

2vi. The proof is analogous to the proof of Theorem 4.1. It
is based on considering the net welfare loss of switching a player to his/her allocation
in a different solution. We show that for any alternate allocation, the sum of the net
welfare losses over all players can be bounded by (k+1)W b(A), which is k+1 times the
maximum total declared value of any solution. The claimed Price of Anarchy bounds
then follow from Theorem 3.1′.

8. EXTENSIONS
Throughout this paper, we focused on pay-your-bid payment schemes. However, all of
our results generalize to payment schemes that use arbitrary non-negative payments
which are upper bounded by the respective bid. In this case, we resort to weak smooth-
ness [Syrgkanis and Tardos 2013]. In our statements (λ, µ)-smoothness would be re-
placed by weak (λ, 0, µ)-smoothness. Considering equilibria without overbidding, i.e.,
always bi(x) ≤ vi(x), this implies a PoA bound of (1 + µ)/λ.

Furthermore, Theorem 3.1 also holds if f ′ is not an exact declared welfare maxi-
mizer, but only allows implementation as a truthful mechanism. The interesting con-
sequence is that it might make sense to only approximately solve the relaxation if this
improves the smoothness guarantees. For example, a packing LP can be solved us-
ing the fractional-overselling mechanism in [Hoefer et al. 2013], which was originally
introduced in [Krysta and Vöcking 2012]. The allocation rule is an O(log n + logL)-
approximation for any packing LP with n bidders and L constraints between bidders.
It allows implementation as a truthful mechanism but it is also a greedy algorithm in
the sense of [Lucier and Borodin 2010]. Therefore, the respective pay-your-bid mech-
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anism is ( 1
O(logn+logL) , 1)-smooth. This means that combining this algorithm with any

α-approximate oblivious rounding scheme for the respective packing LP, we get a pay-
your-bid mechanism with Price of Anarchy at most O(α(log n+ logL)).

Finally, Carr and Vempala [2002] introduced randomized metarounding, which is
a technique to derive oblivious rounding schemes from non-oblivious ones. Lavi and
Swamy [2005] used this result to construct truthful mechanisms. However, they addi-
tionally need a packing structure. As in our case oblivious rounding is enough, any
rounding scheme derived from the original version in [Carr and Vempala 2002] is
enough for our considerations.

9. DISCUSSION
In this paper we have shown that algorithms that follow the relax-and-round paradigm
and whose rounding is oblivious have a very desirable property: Namely, if the round-
ing scheme is α-approximate and the relaxation has a Price of Anarchy via smoothness
ofO(β), then the resulting relax-and-round mechanism has a Price of Anarchy ofO(αβ)
provable via smoothness.

Two aspects that we did not touch upon are equilibrium existence and the computa-
tional complexity of computing an equilibrium. The former is particularly relevant for
pure equilibrium concepts, such as pure Nash equilibria or pure Bayes-Nash equilib-
ria. The latter has been shown to be a problem for Bayes-Nash equilibria in simulta-
neous first-price auctions [Cai and Papadimitriou 2014].

Our foremost intended application is to repeated settings, where regret minimiza-
tion converges to a coarse correlated equilibrium in polynomial-time. In fact, we do
not even need vanishingly small regret — we only need that agents have no regret for
deviations to half their value. This argument readily applies to settings of incomplete
information, showing near-optimal system performance even out of equilibrium. We
consider the availability of such simple fall-back strategies as a major advantage of
direct mechanisms over indirect mechanisms, where bidders typically have to solve a
non-trivial problem to figure out good strategies.
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