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Abstract. Prophet inequalities bound the reward of an online
algorithm—or gambler—relative to the optimum offline algorithm—the
prophet—in settings that involve making selections from a sequence of
elements whose order is chosen adversarially but whose weights are ran-
dom. The goal is to maximize total weight.

We consider the problem of choosing quantities of each element sub-
ject to polymatroid constraints when the weights are arbitrary concave
functions. We present an online algorithm for this problem that does at
least half as well as the optimum offline algorithm. This is best possible,
as even in the case where a single number has to be picked no online
algorithm can do better.

An important application of our result is in algorithmic mechanism de-
sign, where it leads to novel, truthful mechanisms that, under a mono-
tone hazard rate (MHR) assumption on the conditional distributions of
marginal weights, achieve a constant-factor approximation to the opti-
mal revenue for this multi-parameter setting. Problems to which this
result applies arise, for example, in the context of Video-on-Demand,
Sponsored Search, or Bandwidth Markets.

1 Introduction

Prophet inequalities compare the performance of an online algorithm to the
optimum offline algorithm in settings that involve making selections from a se-
quence of random elements. The online algorithm knows the distribution from
which the elements will be sampled, while the optimum offline algorithm knows
the sequence of sampled elements. Prophet inequalities thus bound the relative
power of online and offline algorithms in Bayesian settings. Not surprisingly, they
play an important role in the analysis of online and offline algorithms in these
settings. Less obviously, but no less importantly, they have a growing number of
applications in algorithmic mechanism design. Specifically, they have been used
to design simple yet approximately optimal (=revenue maximizing) mechanisms
for multi-parameter settings, in which Myerson [17]’s seminal characterization of
optimal mechanisms does not apply. Revenue maximization in multi-parameter
settings is considered one of the biggest challenges in this field.

A classic result of Krengel and Sucheston [15, 16] shows that when both the
online algorithm and the offline algorithm get to pick exactly one element, then
the online algorithm can do at least half as well as the offline algorithm. More
formally, if w1, ..., w, is a sequence of independent, non-negative, real-valued
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random variables satisfying E[max; w;] < oo, then there exists a stopping rule 7
such that

Elw,] > % - E[max wy].

The bound is achieved, for example, by an elegant algorithm of Samuel-Cahn
[18]. This algorithm chooses a threshold 7' such that Pr(max;w; > T) = 1,
and selects the first element whose weight exceeds this threshold. Alternatively,
as described by Kleinberg and Weinberg [14], this bound can be obtained by
choosing threshold T' = E[max; X;]/2 and picking the first element whose weight
exceeds the threshold.

Kleinberg and Weinberg [14] recently extended this result to matroid settings.
In a matroid setting we are given a ground set I/ and a non-empty downward-
closed family of independent sets Z C 2/l satisfying the exchange axiom: for
all pairs of sets I,J € T and |I| < |J] there exists an element j € J such that
TUu{j} € Z; a maximal element of Z is called a basis. For these settings they prove
that if both the online and the offline algorithm have to pick an independent set
of elements, then the online algorithm again can do at least half as well as the
offline algorithm. More formally, if w1, ..., w, is a sequence of independent, non-
negative, real-valued random variables satisfying E[max; w;] < co, then there is
a way to pick A € 7 in an online fashion such that

Zwi] >3 [mZW]

€A i€EB

E

A common restriction of the original result of Krengel and Sucheston and the
Kleinberg and Weinberg result is that they only apply to settings with binary
decisions (i.e., an element can either be picked or not).

A Prophet Inequality for Polymatroids. Our main technical contribution is
a prophet inequality for settings in which the gambler and the prophet
have to choose quantities of each element subject to polymatroid constraints
and the weights are arbitrary concave functions. That is, we consider set-
tings in which we are given a ground set U/ and a submodular® set func-
tion f : 24 — R and a vector of quantities z € Nl is feasible
if z€ Pp={qeNU | _cq(u) < f(S) for all S C U}. We will restrict our-
selves to integer quantities and integer-valued set functions for ease of exposition;
our results trivially extend to rational quantities and rational-valued functions
by scaling. For this setting we prove that if the goal of the online and the offline
algorithm is to maximize ), ., w(u,z(u)) over feasible z, and if the w’s are
random concave weights chosen independently for each element, then the online
algorithm can do at least half as well as the offline algorithm.

More formally, we show that if ws,...,w, is a sequence of independent,
non-negative, real-valued concave weight functions for elements u, ..., u,, then
there exists a way to choose a feasible z = (z1,. .., z,) in an online fashion (i.e.,,

3 A set function f is submodular if for all X C Y C U, fF(XUY)+ f(X NY) <
FX)+ (V).
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choosing z; when wi,...,w; have been revealed but w;1,...,w, have not yet
been revealed) such that

n 1 n
E lzw(u“ZZ)] > 3 E [gggﬁ 2 w(ui»(h)] .
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Our result contains the previous results as a special case, and is best possible
as even in the case where a single element has to be picked no online algorithm
can do better.

To prove this result we apply a known reduction from polymatroids to ma-
troids (see, e.g., Section 44.6b of [19]). Applying this reduction, we transform
an input sequence to the polymatroid problem to an input sequence of the ma-
troid problem by repeating the (element, weight) pairs in the input sequence to
the polymatroid problem. While this construction turns inputs to the polyma-
troid problem into inputs to the matroid problem, it violates the independence
of weights assumption. Different matroid elements corresponding to the same
polymatroid element will have identical (and hence dependent) weights.

A second potential difficulty that arises when reducing the polymatroid prob-
lem to the matroid problem in this manner is that the canonical way of doing so
(by repeating elements of the ground set of the polymatroid and assigning the
j-th copy of an element in the resulting matroid problem the marginal weight of
the j-th unit of the corresponding element in the polymatroid setting) only leads
to a meaningful interpretation if the matroid algorithm always picks contiguous
elements from the beginning of each sequence of matroid elements corresponding
to the same polymatroid element.

The Kleinberg-Weinberg algorithm does not apply to dependent weights and
it also does not necessarily pick consecutive matroid elements. Our main tech-
nical workhorse is therefore a novel algorithm for the matroid setting that is
capable of handling the dependencies resulting from the reduction, and that en-
sures that a solution to the matroid problem can be meaningfully translated back
to the polymatroid setting. To ensure the latter our algorithm sets increasing
thresholds within each block of elements corresponding to the same polymatroid
element, and accepts an element precisely if the weight of that element passes the
threshold. Once an element fails to pass the threshold it “freezes” the threshold
at the current niveau. It thereby ensures that subsequent elements will not be
selected as their weight can only be lower. We control for the former, i.e., the
potential dependencies across weights of matroid elements corresponding to the
same polymatroid element, by introducing the notion of surrogate thresholds
and performing large parts of the analysis using these surrogate thresholds as
proxies.

Truthful Mechanisms with Near-Optimal Revenue. The most important implica-
tion of our prophet inequality result are novel, truthful mechanisms that achieve
constant-factor approximations to the optimal revenue for a multi-parameter
mechanism design problem. The problem to which our mechanisms apply is
multi-parameter as each agent can receive multiple units, and can have arbi-
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trary concave valuations. The requirement that the valuations are concave cor-
responds to the standard economic assumption that valuations have decreasing
marginals. Like prior results our mechanisms are posted-price mechanisms; that
is, they approach the agents in turn and present them with a price that the agents
can either accept or not. However, prior results that have used prophet inequal-
ities to devise posted-price mechanisms were restricted to unit-demand settings
(e.g., [5, 1, 14]). To the best of our knowledge, our posted price mechanisms are
the first such mechanisms for a multi-unit demand setting, and yield the first
constant-factor revenue guarantees for problems with polymatroid structure and
valuations with decreasing marginals.

In a Bayesian mechanism design problem with polymatroid structure we are
given a set N of n agents. Each agent ¢ has a private, concave valuation function
v; : N = Ry, drawn independently from not necessarily identical distributions
F; with support V; that are common knowledge. A mechanism (x,p) consists
of an outcome rule = : [[, Vi = R%, where z; specifies how much service agent
i gets, and a payment rule p : [[, V; — R”}, where p; specifies the payment of
agent i. An outcome is feasible if )7, g 2; < f(S) for all S € N, where f is an
integer-valued submodular function. Agent ¢’s utility is w;(b,v;) = v;(2;(b)) —
p;i(b), where b denotes the bids of the agents. The welfare of a mechanism is
> ien Vi(zi(b)) and its revenue is ), n pi(b). A mechanism is dominant strategy
incentive compatible (DSIC) (or truthful) if for every agent 4, value v;, bid b;
and bids b,i = (bh ey bifl, bi+1, ey bn), ’LLZ'((UZ', b,i), Ui) 2 ul((b“ b,Z'), ’l)i).

Practical mechanism design problems with polymatroid structure include:

(1) Video-on-Demand [4]: Consider a collection of spatially dispersed user
groups, each of which wants to watch various movies using a streaming service.
We can model this via a graph G = (e T3 U {s}, E) in which T; N T; = () for
all 7,7 € N and each edge e € E has a capacity c.. The seller is identical with
source node s. Each agent ¢ € N is identified with a number of demand nodes
T; corresponding to the members of user group i. The allocation to each agent
i € N is ZteTi ¢, where x; is the flow into ¢t. An allocation z is feasible if and
only if >, cgxs < f(S) for all S C |,y T3, where f is the submodular function
giving the value of a minimum s-S-cut.

(2) Local Purchasing Collectives [3]: Consider a group of buyers which is
interested in purchasing a certain good from local providers. We can model this
via a bipartite graph with vertices on the left side representing providers and
those on the right side representing buyers (elements of N). An edge represents
a buyer having access to a particular provider. Suppose that each provider j
has a positive supply s(j). A vector of quantities purchased is feasible if each
buyer’s quantity can be fulfilled by one or more of the adjacent providers without
exceeding any provider’s supply. More formally, for a set S of buyers let I'(S)
denote the set of providers adjacent to at least one element of S, and let f(S) =
>_jer(s) 5(J) which is a submodular function. A vector « of quantities purchased
is feasible if and only if for every set of buyers S, we have ), ¢ 2; < f(95).

(3) Sponsored Search [10]: In sponsored search a set of advertisers seeks
to be assigned clicks on ad slots. Denote the set of advertisers by N and the
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set of ad slots by M. Sort the ad slots j € M by non-increasing number of
clicks a; € N>o. An allocation x of clicks to advertisers is feasible if and only if
YicsTi < f(S) for all S € N, where f(S) = leﬂl o is a submodular function.

(4) Bandwidth Markets [4]: In wireless communication settings agent
1 € N seeks to maximize its transmission rate x;. In a Gaussian multiple-access
channel the set of feasible transmission rates z—the so-called Cover-Wyner
region—forms a polymatroid (see [20] for details).

We present two DSIC posted-price mechanisms for these problems. The first
combines the thresholds of our algorithm with “eager” reserves, the second com-
bines them with “lazy” reserves [7]. The difference between eager and lazy re-
serves is that the former are applied during the computation of the allocation,
while the latter are applied only after the fact. In our case, however, both can
be implemented in an online fashion. We prove that these mechanisms achieve
at least a 1/2e2 resp. 1/2e fraction of the optimal revenue by proving a lower
bound in terms of the optimal welfare. For “eager” reserves we use Chebyshev’s
Integral Inequality and inductively apply a single-sample argument of [7]. For
“lazy” reserves we only need the single-sample result.

Related Work. We have already described the result by Krengel and Sucheston
[15, 16] for the case in which both the online algorithm and the offline algorithm
are allowed to pick one number, showing that the online algorithm can do at least
half as well as the offline algorithm. This bound is tight. The result has been
extended to the case where both the online algorithm and the offline algorithm
can pick k numbers by Alaei [1], showing that the online-to-offline ratio is at
least 1 —1/(v/k + 3). This matches the aforementioned tight bound when k = 1,
and it remains nearly tight for £ > 1, in the sense that a ratio of 1 — o(1/vk)
is known to be unattainable. Kleinberg and Weinberg [14] have extended the
bound of two to settings where the elements picked must be an independent set
in a matroid. This bound is also tight, as it subsumes the case where both the
online and offline algorithm have to pick one number.

Hajiaghayi et al. [13] observed the following relationship between prophet in-
equalities and algorithmic mechanism design: algorithms used to prove prophet
inequalities can be interpreted as truthful online auction mechanisms, and the
prophet inequality in turn can be interpreted as the mechanism’s approxima-
tion guarantee. Chawla et al. [5] observed an even subtler relationship between
the two topics: questions about the approximability of offline Bayesian opti-
mal mechanisms by sequential posted-price mechanisms could be translated into
questions about prophet inequalities, via the use of virtual valuation functions.
Alaei [1] and Kleinberg and Weinberg [14], armed with stronger prophet inequal-
ities, deepen this relationship even further. More recently, and in parallel to this
work, Feldman et al. [9] have designed posted-price mechanisms for combinato-
rial auctions, which are not based on prophet inequalities.

Another related line of literature is work on secretary problems, which also
concerns relations between optimal offline selection rules and suboptimal online
stopping rules, but under the assumption of a randomly ordered input rather
than independent random numbers in a fixed order. While the polymatroid
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prophet inequality that we solve here contains the matroid prophet inequality
problem as a special case, the matroid secretary problem introduced by Babaioff
et al. [2] remains largely unsolved despite recent progress.

A final related direction is work on exponential-sized Markov decision pro-
cesses (MDP’s) [6, 11, 12]. The connection here is that algorithms for prophet
inequalities can be formulated as exponential-sized MDP’s, whose state reflects
the entire set of decisions made prior to a specified point during the algorithm’s
execution. Most of the algorithms with provable approximation guarantees for
exponential-sized MDP’s are LP-based, while our algorithm is combinatorial.

2 Preliminaries

In a Bayesian online selection problem we are given a ground set U/ and for each
x € U a probability distribution F}, with support RE = {m € Ri i <iv = my >
m;} of finite dimension d € N,. This induces a probability distribution over
functions w : U x {1,...,d} — R4 in which the multivariate random variables
{(w(z,1),...,w(x,d)) : © € U} are independent and the marginals (w(z,1) —
w(z,0),...,w(x,d) —w(x,d—1)) where we set w(z,0) = 0 have distribution F.
We refer to w(x, k) as the weight of k units of z, and to w(x, k) — w(z, k — 1)
as the marginal weight of the k-th unit of z. By our assumption regarding the
distributions F, for x € U, the marginal weights w(z,k) — w(z,k — 1) for all
x €U and k > 1 are decreasing and the weight w(z, k) of any given z € U is a
concave function in k.

The goal is to choose a vector z € RIUI that maximizes Y oweu w(T, 2(w)).
For a given weight function w we use OPT(w), or simply OPT, to denote the
optimal value. The vector z will typically be restricted to come from a space
of feasible vectors F C RUI. One common restriction is F C {0,1}¥! in which
case z; € {0,1} can be thought of as encoding membership in a subset A C U.
Two further restrictions, matroids and polymatroids, were discussed already in
Section 1. For matroids the distribution F, for € U has dimension 1; for
polymatroids defined by f taking values in {1,..., M} it suffices to consider
distributions F,, for x € U of dimension M.

An input sequence is a sequence o of ordered pairs (x,w;)j—1,... | consist-
ing of an element x; € U and marginals w; € RY such that every x; € U occurs
exactly once in the sequence. A deterministic online selection algorithm is a func-
tion z mapping every input sequence o to a vector z(c) € F such that for any
pair of input sequences o, ¢’ that match on the first ¢ pairs (z1,w1), ..., (z;, w;)
we have z;j(0) = z;(0’) for all 1 < j < i. An online weight-adaptive adver-
sary that has chosen x7 ..., z;_1 and has learned about wy, ..., w;_1 chooses x;
without knowing w;.

Notation. For a real number z, we use z" to denote max{z,0}. We use the
shorthand w(S) to denote the weight of a feasible (multi-)set S of elements
rel.

3 Algorithm for Polymatroids

We derive our algorithm for the polymatroid prophet inequality by reducing to
the matroid case. We begin by defining block-structured matroids, block-restricted
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weight distributions, and block-restricted adversaries. Although a prophet in-
equality for the resulting matroid problem would translate into a prophet in-
equality for the polymatroid problem, we cannot simply apply the Kleinberg-
Weinberg algorithm for matroids to derive it. The reason is twofold. First, the
reduction from polymatroids to matroids leads to weight distributions that are
no longer independent. Second, for the weights in the matroid setting to be in
one-to-one correspondence to the weights in the polymatroid setting we need to
ensure that the matroid algorithm chooses consecutive elements of each block.
The crux of our analysis is therefore a novel algorithm for the matroid setting
that can handle the dependencies that result from the reduction and that guar-
antees that weights are consistent.

Due to space limitations, most proofs in this section and the following one
are deferred to the full version of the paper [8].

3.1 Block-structured matroids

We first define block-structured matroids and show that to every polymatroid
defined by an integer-valued submodular function there is an associated block-
structured matroid.

Definition 1. A block-structured matroid is one whose ground set is partitioned
into blocks By, ..., B, such that the independence relation is preserved under
permutations of the ground set that preserve the pieces of the partition.

For a set S C By U---U B, we define its cardinality vector q(S) =
(q1(5),q2(S), ..., qn(S)) by setting ¢;(S) =|SNB;| fori=1,...,n.

Lemma 1 (cf. Chapter 44.6b of [19]). Suppose f is a submodular function
on ground setU = {uy,...,u,}, taking values in {0,1,..., M}. There is a block-
structured matroid My on ground set U x [M] with blocks B; = {u;} x [M] (i =
1,...,n), whose independent sets are those S satisfying q(S) € Ps.

Next we define block-restricted weight distributions and block-restricted ad-
versaries to capture the type of input sequences generated by our reduction.
We also define a property of algorithms for block-restricted matroids that en-
sures that the weights in the matroid setting can be translated back into the
polymatroid setting.

Definition 2. A block-restricted weight distribution on a block-structured ma-
troid is a joint distribution of weights for its elements, such that the elements
of a block receive mon-increasing weights, the weights within each block can be
arbitrarily correlated, but the weight assignments to different blocks are mutually
independent.

Definition 3. A block-restricted adversary is one who is restricted to choose
an ordering of the input sequence in which the elements of each block appear
consecutively, and after any proper subset of the blocks have been presented,
the choice of which block is presented next may only depend on the weights of
elements that have already been presented.
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Definition 4. A deterministic algorithm for block-restricted matroids is con-
sistent if whenever it picks the j-th element of a block if it has already picked
elements 1,...,5 — 1 from that block. In other words a consistent algorithm for
block-restricted matroids may only choose consecutive blocks of items at the be-
ginming of each block in the matroid.

Note that when all blocks have size 1, a block-structured matroid is simply
a matroid, and a block-restricted distribution is simply an independent distri-
bution. Furthermore, a block-restricted adversary is exactly the same as the
notion of online weight-adaptive adversary defined in [14]. Thus, the special case
in which all blocks have size 1 is precisely the setting of the matroid prophet
inequality of [14].

3.2 Prophet Inequality for Block-Structured Matroids

Next we describe our algorithm for the matroid problem. The algorithm is similar
in spirit to the algorithm of Kleinberg and Weinberg in that it sets a threshold for
each element and accepts the element if and only if its weight exceeds the thresh-
old. However, it significantly differs from the Kleinberg-Weinberg algorithm in
the way it chooses the thresholds.

Consider a block-restricted matroid M = (U,Z). Let w,w’ : U — Ry
denote two assignments of weights to the elements of U sampled indepen-
dently from a block-restricted weight distribution. For a given input sequence
o = (z1,w(z1)),..., (Tn,w(x,)) we compare the set A = A(o) selected by the
algorithm to the basis B that maximizes w’(B). The matroid exchange axiom
guarantees the existence of a partition of B into disjoint subsets C, R such that
AU R is also a basis of M. Among all such partitions, let C(A), R(A) denote
the one that maximizes w'(R). Let g(A) = w'(R(A)).

The selection algorithm when faced with element x; proceeds as follows:
Denote the (possibly empty) set of elements already selected by A;_; and denote
the (possibly empty) set of indices of elements belonging to the same block as x;
and that precede z; in the input sequence by Pred(x;). Element z; is accepted
if and only if w(x;) > T; where the threshold T; is determined as follows. If
A1 U{z;} € T then T; = co. Otherwise,

1
T; = max{jelgrrlg;%m)Tj B “Elg(Ai—1) — g(Ai—1 U {z:})]}

1 , /
= max{jelgrrlgi%mTj 3 E[w (R(Ai—1)) —w' (R(Aiy U{zi}))]} - (1)

1
=max{ max Tj,= Elw' (C(A4;_1U{z;}))—w'(C(Ai=1))]}. (2)
jE€Pred(xz;) 2
Note that (1) and (2) define the same quantity: Let B be the maximum weight
basis of M with weights w’. Then, w'(B) = w'(C(A4;-1)) + w'(R(A;—1)) and
w'(B) = w'(C(A;i—1 U{z;})) + w'(R(A;—1 U{z;})). Equalizing and rearranging
gives

w' (R(Ai—1)) — w' (R(Ai—1 U{z:})) = w'(C(Ai—y U{ai})) — w'(C(Ai-1)).
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Theorem 1. For every block-restricted matroid (U,T) with block-restricted
weight distribution there is a deterministic, consistent online selection algorithm
that achieves the following performance guarantee against block-restricted adver-
saries:

Ejw(A)] > % . OPT.

Before we outline how this theorem can be proved, we use it to derive a prophet
inequality for polymatroids.

3.3 Prophet Inequality for Polymatroids

The algorithm that achieves the prophet inequality in the polymatroid set-
ting (with integer-valued submodular function f taking values in {1,...,M})
does so by reducing the problem to the block-structured matroid setting with
the matroid My defined in Lemma 1 as follows. If in the polymatroid set-
ting the elements are presented in order wui,...,u,, then the reduction con-
structs an input sequence in the matroid setting by presenting the elements
in order (uy,1),(u1,2),...,(usz,1),(u2,2),... (lexicographic order, U coordi-
nate first). If in the polymatroid setting the marginal weights of element wu;
are w; = (w;1,Wiz2,...,w;m) then element (u;,j) is presented in the matroid
setting with weight w; ;. If the matroid algorithm, while processing elements
(uiy 1), (wiy 2), ..., (us, M), selects a subset {u;} x S;, then the polymatroid al-
gorithm when processing u; sets z; = |.S;].

Theorem 2. For every polymatroid Py defined by a rational-valued submodular
function f and concave weights there exists a deterministic online selection al-
gorithm that satisfies the following performance guarantee against online weight-
adaptive adversaries:

E liw(uz,z(ul))] > % - OPT.

3.4 Proof of the Block-Restricted Matroid Prophet Inequality

We start with a proposition that provides a lower bound on the sum of the
thresholds of the elements that are selected by the algorithm. The proof of this
proposition exploits the definition of the thresholds and, in addition, linearity of
expectation and a telescoping sum.

Proposition 1. For every input sequence o, if A = A(o), then
Yweali 2 5 Elw'(C(A4))).

Next we describe our main technical insight. Namely, that the thresholds
within a given block have a specific form (see Figure 1 for an illustration).

Specifically, consider any block consisting of elements w;,, %i 41, - .., %, —1. For
all ig < i <y define A® = A;,_1 U {x;,,...,2;}, and
1 i— i

ti =5 Euw [9(A71) —g(AY)], 3)

2
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Fig. 1. Visualization of the thresholds set by the algorithm

where for convenience we also set A°~! = A, ;. We will show that the sequence
of numbers defined by (3) forms a non-decreasing sequence depending only on
the weights associated with previous elements wi,ws, ..., w;,—1, and that for
19 < i < 47 — 1 the algorithm sets threshold T; = ¢; if t; < w; and T; > w;
otherwise.

Lemma 2. Consider a block-structured matroid (U, T) with blocks By,..., By.
For any input sequence o generated by a block-restricted adversary, and any block
Bj, let ig,i0 + 1,...,%1 denote the times when the elements of B; are presented
in 0. The sequence of numbers t;,,...,t;, defined by (3) satisfies t;, < tiy41 <
- <'t;, and depends only on the subsequence of o preceding time ig. Moreover,
the algorithm is consistent and sets T; = t; for all ig < i <11 such that t; < w;,
and T; > w; otherwise.

An important corollary of the preceding structural result regarding the
thresholds is the following assertion for two weight assignments w,w’ drawn
independently from a block-restricted weight distribution.

Corollary 1. Let w,w’ be two weight assignments drawn independently from
a block-restricted weight distribution. For any input sequence o generated by
a block-restricted adversary, and any block Bj, let ig,%0 + 1,...,1; denote the
times when the elements of B; are presented in o. Then, for all ig < 1 < iy,
(w; —T3)T = (w; — t;)T, and w;, t;,w'(x;) are mutually independent, so

Ef(w; — Ti)ﬂ = E[(w; — tz’)ﬂ = E[(w’(xl) - ti)Jr]'

The final ingredient is an upper bound on the sum of the surrogate thresholds
t; for the elements x; in R(A), where A is the set of elements accepted by the
algorithm on a given input sequence o.

Proposition 2. For every input sequence o generated by a block-restricted ad-
versary, let A= A(c). Then 3, cpayti < 3 -Elw'(R(A))].

The proof of Theorem 1 uses our structural insight regarding the thresholds
to lift the proof from the actual thresholds to the surrogate thresholds. It then
uses the upper and lower bounds on the surrogate thresholds from this section
to establish the claimed bound.
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4 Application to Mechanism Design

We conclude by showing how our prophet inequality algorithm can be used
to derive dominant strategy incentive compatible (DSIC), constant factor-
approximations to the optimal revenue for a multi-parameter setting in which
Myerson’s analysis of the revenue-maximizing auction does not apply. Our re-
sult applies to concave weights whose distribution satisfies a conditional analog
of the monotone hazard rate (MHR) condition. Specifically, we will assume that
for each element u; € U the conditional distribution of the marginal weight
wy,; of the j-th unit given the marginal weights w; 1, ..., w; j—1 of the preceding

units is MHR. That is, f(wi’jvWi’jvov’“"wf”fl) is non-decreasing in w; ;. One ex-
1 F(wz,j|wz,j07---7wz,g—1) 5]
ample of a distribution satisfying this assumption is obtained by first drawing
w; 1 ~ U[0,1], then drawing w; o2 ~ U0, w; 1], and so on.
We obtain posted-price mechanisms by combining the algorithm for polyma-
troids with “eager” or “lazy” monopoly reserves [7]. The monopoly reserve r*

for a given distribution F' over valuations v with density f is * = ¢~1(0) where

d(v) =v— 1}5)()“) is the virtual valuation. In the case of “eager” reserves, we
modify the algorithm so that it only awards element z; if its weight w(x;) exceeds
the threshold 7; and the monopoly reserve r; of the conditional distribution of
w(z;). In the case of “lazy” reserves, we first run the algorithm to determine a
tentative allocation, but then we only allocate elements whose weight also ex-
ceeds the reserve. Note that this can be done in an online fashion by computing
thresholds as if all tentative assignments were made, but only actually awarding
an element if it also exceeds the reserve.

Both mechanisms are DSIC as they are posted price. To prove the revenue
bounds we need the following single-sample result.

Lemma 3 (Lemma 3.10 of Dhangwatnotai et al. [7]). Let I' be an MHR
distribution with monopoly price r* and revenue function R. Let V(t) denote
the expected welfare of a single-item auction with a posted price of t and a sin-

gle bidder with valuation drawn from F. For every nonnegative number t > 0,
R(max{t,r*}) > 1.V (t).

Theorem 3. For polymatroids Py defined by rational-valued submodular func-
tion [ and concave weights that satisfy the conditional analog of the MHR con-
dition, combining the polymatroid prophet inequality algorithm with “eager” or
“lazy” reserves yields a DSIC mechanism whose revenue Rgager or Rpazy on
any input sequence o generated by an online weight-adaptive adversary satisfies

1 1
Rracer(c) > —5 - Ropr(o) or Rpazy > — - Ropr(0),

2e2 ~ 2e
where Ropr denotes the optimal revenue.

Corollary 2. For MHR valuations with decreasing marginals, there is a truthful
1/2e approximation to revenue for video-on-demand, bandwidth markets, spon-
sored search, and local purchasing collectives.
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