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In posted pricing, one defines prices for items (or other outcomes), buyers arrive in some order and take their
most preferred bundle among the remaining items. Over the last years, our understanding of such mechanisms
has improved considerably. The standard assumption is that the mechanism has exact knowledge of probability
distribution the buyers’ valuations are drawn from. The prices are then set based on this knowledge.

We examine to what extent existing results and techniques are robust to inaccurate prior beliefs. That is,
the prices are chosen with respect to similar but different probability distributions. We focus on the question
of welfare maximization. We consider all standard distance measures on probability distributions, and derive
tight bounds on the welfare guarantees that can be derived for all standard techniques in the various metrics.
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1 INTRODUCTION
Posted-price mechanisms and prophet inequalities have seen a surge of interest over the past few
years. Posted-price mechanisms are probably the most frequently used economic mechanisms
for selling goods or services in practice. They are “simple,” truthful, near-optimal mechanisms.
Prophet inequalities in turn are the most important mathematical tool for analyzing posted-price
mechanisms, but they also provide a less pessimistic framework for analyzing online algorithms
than the classic competitive analysis framework by assuming that the input is drawn from known
distributions rather than being fully adversarial.
The simplest problem for which posted-price mechanisms and prophet inequalities have been

studied is the problem of allocating a single item. Here n agents arrive one-by-one with a value vi
drawn from a known distribution, and upon arrival of an agent it must be decided whether this
agent should get the item or not.

A canonical generalization of this problem is to matroid feasibility structures, in which multiple
agents can be accepted as long as they form an independent set in a given matroid. Another
generalization is to combinatorial auctions, in which multiple items can be allocated and each agent
has a valuation function, mapping bundles of items to values.
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Fig. 1. Kolmogorov metric (on the left) vs. Lévy metric (on the right)

In all of these settings, the optimal online algorithm is a posted-price mechanism, which prices all
allocations that are still feasible and lets the arriving agent choose a utility maximizing allocation.
These optimal prices can be found via backward induction.

Computing this optimal strategy, however, may require exponential space or solving a NP-hard
optimization problem, it generally requires “dynamic pricing,” and it can be hard to quantify how
good this strategy is in comparison to the offline optimum.
Alternative, simpler strategies have been proposed that only approximate the offline optimum.

They also serve as constructive ways to establish prophet inequalities: The expected value of the
chosen allocation provides an α-approximation to the expected optimal value in hindsight. Prophet
inequalities can be price-based in which case they show that the corresponding posted-price
mechanism obtains an α-approximation of the optimal offline value.
Over the past few years two main techniques for establishing price-based prophet inequalities

have been developed, quantile pricing, where decisions are made such that probabilities of certain
events have certain values, and balanced prices, where prices are set high enough so that they
partially offset the value lost due to allocation decisions but also low enough so that agents could
receive high enough utility from what remains unallocated.

The standard assumption in the literature is that the priorsD1, . . . ,Dn fromwhich the valuations
are drawn are known precisely. In almost all practically relevant applications this seems like a rather
strong and unrealistic assumption. In this paper, we therefore examine how robust these different
techniques are when only inaccurate priors D̃1, . . . , D̃n are known. Specifically, we will assume
that prices are defined based on D̃1, . . . , D̃n but the agents’ values are still drawn fromD1, . . . ,Dn ,
where each D̃i is ϵ-close to Di in a probability metric.

1.1 The Challenges
We illustrate the challenges in developing such results by reviewing the standard techniques
for the single-item setting. There are two standard metrics for this setting. Both are defined on
the cumulative distribution functions. The Kolmogorov metric allows the cumulative distribution
functions to be shifted vertically by ±ϵ . The Lévy metric allows the cumulative distribution function
to be shifted vertically and horizontally by ±ϵ . See Figure 1 for a visualization, and Section 3 for
formal definitions.

Distances in the Lévy metric are smaller than in the Kolmogorov metric. So assuming that two
distributions are ϵ-close in the Kolmogorov metric is a stronger assumption than assuming that
they are ϵ-close in the Lévy metric.
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Since probability metrics are additive, they naturally lead to additive error terms. We therefore
assume that valuations are normalized to [0, 1].

Optimal Static Price. A natural approach is to choose the best static price. This, however, can be
arbitrarily bad if distributions are only close in Lévy metric. To see this consider a setting with
n ≥ 2 i.i.d. agents. If the inaccurate priors are that valuations are distributed uniformly on [1− ϵ, 1],
then the best static price will be some p̃ ∈ (1 − ϵ, 1). If the values are actually distributed uniformly
on [1 − 2ϵ, 1 − ϵ], then this price achieves no welfare at all.

Quantile Pricing. The original prophet inequality proof of Samuel-Cahn [19] sets a single price
such that with probability exactly 1/2 the item is sold. This can be shown to achieve 1/2 of the
maximum expected value on accurate priors.
Like the best optimal static price this approach is not robust if the inaccurate priors are only

close in the Lévy metric. A shift of values by ϵ can change the probability of selling drastically; it
can even drop to 0. (See Proposition 4.12 in Section 4.3).

Balanced Prices. The canonical balanced prices mechanism for this setting is the mechanism by
Kleinberg and Weinberg [15]. It sets a single price, and uses this price for all agents. The price that
it sets is 1/2 the maximum expected value. Setting this price can be shown to recover 1/2 of the
maximum expected value provided that priors are accurate.

If the inaccurate priors are ϵ-close in Kolmogorov or Lévy metric, then the expected maximum
value differs by at most 2nϵ (Lemma 4.10 in Section 4.2). Hence the prices p̃ and p computed on the
inaccurate priors and the accurate priors will be within nϵ of each other.

Prior work has shown that in this case the expected value that one achieves by setting p̂ instead
of p is by at most an additive O (nϵ ) term lower [11]. In case of multiple items, however, it is not
difficult to see that prices can be far apart when the values can be shifted. (See Example 4.7 in
Section 4.2.)

Backward Induction. Defining a sequence of prices that maximize the expected value can be done
recursively. For the last agent, the price will be zero; for agent i < n it is exactly the expected value
extracted from agents i + 1, . . . ,n. Here, it is arguably less obvious what to expect. How do errors
propagate and accumulate? Are there cascading effects?

1.2 Our Results
We consider (essentially all) standard distance measures on probability distributions (see Section 3),
and derive tight bounds on the welfare guarantees that can be derived for all standard techniques
in the various metrics.

Lévy, Prokhorov, and Wasserstein Metric. Our first set of results concerns the Lévy metric and
similar metrics for multi-parameter settings.

We show that the optimal policy via backward induction for the inaccurate priors D̃ only loses
an additive O (nϵ ) term compared to the expected welfare achieved by the optimal policy for the
actual distributions D (Theorem 4.1 in Section 4). The crux is to first compare the expected welfare
that these two optimal policies achieve on their respective distributions D̃ and D. In a second
step, we relate the expected welfare that the optimal policy for the inaccurate priors achieves on
the actual distributions D to that on the inaccurate priors D̃. For both steps we make use of the
existence of a coupling which follows from Strassen’s Theorem [20].
We then show that the prophet-inequality guarantee of balanced prices only loses an additive

O (nϵ ) term (Theorem 4.8 in Section 4). This strengthens the results in prior work by showing that
proximity in price space is not necessary. Prices are balanced if they are high enough and low
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enough with respect to suitable benchmarks. As we show these benchmarks are close in expectation.
For this we again use the existence of the aforementioned couplings.
The additive term of O (nϵ ) in both these results is optimal, even under the much stronger

assumption that the distributions are close in the total variation distance (Proposition 4.5 and
Proposition 4.11 in Section 4). In particular, this shows that the error has to increase as the number
of agents increases, but only linearly so. In other words, there is no cascading effect.
For prices defined on quantiles no such guarantees hold. We show that they can be arbitrarily

bad, even for arbitrarily close distributions.

Kolmogorov Metric and Total Variation Distance. We also show results for probability metrics that
only allow shifts in probability space but not in value space.
We first consider single-parameter settings and the Kolmogorov metric, and show a result that

applies to all approaches reviewed above. Namely, we prove that for all price-based approaches a
policy’s expected welfare differs by at most an additive O (nϵ ) term, when evaluated on the actual
or inaccurate priors (Theorem 5.1 in Section 5). This in particular implies that prophet-inequality
type guarantees are preserved. This bound is tight and generally does not hold for approaches that
are not based on prices (Proposition 5.2 and Example 5.3 in Section 5).
For general multi-parameter settings and the total variation distance we show that all policies

only lose an additive O (n2ϵ ) term (Theorem 6.1 in Section 6), and this bound is tight even for
price-based policies (Proposition 6.2 in Section 6).

1.3 Related Work
Quantile Pricing and Balanced Prices. Apart from the first two papers on prophet inequalities by

Krengel and Sucheston [16, 17], essentially all subsequent work on prophet inequalities and posted
prices either follows the quantile approach or the balanced prices approach. The canonical example
for the quantile approach is [19]. Extensions to combinatorial settings that follow this approach
include [1, 2, 7, 9, 12]. The prototype for the balanced prices approach is [15]. Other important
examples of this approach include [11] and [10].

Sample-Based Approaches. A related but different approach is to assume that one is only given
sample access to the priors. This direction is pursued for welfare in [4, 8, 21] and for revenue in [5].
A possible connection is that one approach in this setting would be to use samples to approxi-

mately learn the true underlying distributions, and to then apply a known technique to the empirical
distributions which will be close to the actual distributions in some metric.
The existing approaches, however, use very different techniques. They usually work with only

a single sample from each distribution and crucially rely on the fact that the samples and the
valuations come from exactly the same distributions.

Connection to Robust Optimization. An alternative approach to our approach is to follow the
perspective of robust optimization. Here, one does not know the instance exactly but one is given
an uncertainty set of possible instances. The goal is to find a max-min optimal solution.
In the context of monopoly pricing with a single buyer this has been done by Bergemann and

Schlag [6], who assume that the designer is given an inaccurate prior D̃ and an ϵ > 0, and seeks to
design a mechanism that maximizes the minimal revenue over all possible actual priors D that are
ϵ-close in the Prokhorov metric to D̃.

An important difference between this and our approach is that this approach requires ϵ to be
known to the mechanism designer.
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1.4 Future Work
We believe that this paper could be the starting point for a very fruitful research agenda that
examines posted pricing and prophet inequalities with inaccurate priors.
A first direction would be to extend our “unknown uncertainty set” approach to revenue maxi-

mization. A second direction would be to design mechanisms that are max-min optimal for both
welfare and revenue maximization.

2 PRELIMINARIES
The Problem. We consider general allocation problems with n agents. We are looking for an

allocation (x1, . . . ,xn ) with the meaning that agent i is assigned xi ∈ Xi . The space of all feasible
such allocations is denoted by F ⊆ X1 × . . . × Xn , F , ∅. For example, we may consider the
problem of allocating bundles of indivisible items to agents, as in a combinatorial auction. In this
case, there will be a set of items M . Any agent can be allocated a bundle of items, so Xi = 2M
for all i . The feasible allocations F is the set of all S1, . . . , Sn such that Si and Si′ are disjoint for
i , i ′. Another example is a matroid structure in which Xi = {0, 1} for all i and F is the set of all
characteristic vectors of independent sets in the matroid.

Each agent i has a valuationvi . The valuation is a functionvi : Xi → R≥0, mapping the respective
assignment to a real value. Our goal is to maximize social welfare. That is, we would like to find an
allocation x ∈ F such that ∑n

i=1vi (xi ) is maximized. We denote by OPT(v ) = maxx ∈F
∑n

i=1vi (xi )
the optimal social welfare on valuation profile v .

We assume to be in a a setting of incomplete information. The valuationvi of agent i is drawn from
a known probability distributionDi , so vi ∼ Di . These draws are independent but the distributions
are not necessarily identical. We let D denote the respective induced product distribution over
valuation profiles.

We are interested in finding an allocation online: The agents arrive one after the other in order
1, . . . ,n. In the i-th step, the assignment for agent i has to be determined only depending on
v1, . . . ,vi . It turns out that, since valuations are independent, nothing can be gained by basing this
decision on the actual valuationsv1, . . . ,vi−1 of previous agents as opposed to only their allocations
x1, . . . ,xi−1. This motivates the study of policies in which the allocation decision for agent i only
depends on vi and the allocations x1, . . . ,xi−1 made to the previous agents.
Formally, a policy is a function π , which maps agent i’s value and the allocation to agents

1, . . . , i − 1 to an allocation for agent i . That is, the allocation is derived by xi = π (vi ,x1, . . . ,xi−1).
Given any distribution D, we writeWD (π ) for the expected social welfare that is achieved by
policy π . The easiest way to defineWD (π ) formally is through the following recursion. Write
WD (π ,x1, . . . ,xi−1) for the expected social welfare of policy π if the first i − 1 agents are fixed to
x1, . . . ,xi−1 but not counted in social welfare. This way,WD (π ,x1, . . . ,xn ) = 0 for all x1, . . . ,xn
and furthermore
WD (π ,x1, . . . ,xi−1) = Evi∼Di [vi (π (vi ,x1, . . . ,xi−1)) +WD (π ,x1, . . . ,xi−1,π (vi ,x1, . . . ,xi−1))] .

Backward Induction. An optimal policy π ∗D for distributionD is a policy π that maximizesWD (π ).
The optimal policy can be found via backward induction because

WD (π ∗D ,x1, . . . ,xi−1) = Evi∼D
[

max
xi ∈Fx1, . . .,xi−1

vi (xi ) +WD (π ∗D ,x1, . . . ,xi−1,xi )
]
,

where Fx1, ...,xi−1 = {(x ′1, . . . ,x ′n ) ∈ F | x ′1 = x1, . . . ,x
′
i−1 = xi−1} is the set of all feasible allocations

that complete the partial allocation x1, . . . ,xi−1.
Depending on the problem at hand, backward induction may also require solving a computation-

ally hard problem as well as exponential space.
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Posted Pricing. Posted-price mechanisms approach each agent i in turn, and offer agent i a
menu of prices pi (xi | x1, . . . ,xi−1) for each xi ∈ Xi , and let agent i choose an allocation xi
that maximizes her utility vi (xi ) − pi (xi | x1, . . . ,xi−1), with ties broken arbitrarily. We require
that pi (xi | x1, . . . ,xi−1) = ∞ for any xi that is infeasible given x1, . . . ,xi−1, so that the allocations
chosen by the agents form a feasible allocation.

Every posted-price mechanism induces a policy, but not every policy can be implemented through
a posted-price mechanism. Posted-price mechanisms are interesting in their own right, and they
have the advantage that they are truthful mechanisms.

It turns out that the optimal policy defined via backward induction always has a correspondence
in posted prices (see the full version of this paper for details).

Prophet Inequalities. For a class of distributions over valuation functions, a prophet inequality
asserts the existence of a family of policies that for each distribution in the class achieves at least
an α ∈ [0, 1] fraction of the expected optimal social welfare. That is, for every distributionD in the
class, there is a policy πD such that

WD (πD ) ≥ α · Ev∼D [OPT(v )] .

While for each distribution D the optimal policy π ∗D can be found via backward induction, it
is often hard to relate the expected social welfareWD (π ∗D ) achieved by this policy to the optimal
expected social welfare Ev∼D [OPT(v )]. Prophet inequalities are therefore often established via
simpler, suboptimal policies.

3 PROBABILITY METRICS
Previous work assumes that decisions can be made based on knowledge of the distribution D. In
an abstract sense, this means that an algorithm knows the distribution D and computes a policy
πD based on knowledge of D such that the welfareWD (πD ) is high. We will consider the case
where the algorithm does not actually have access to the distribution D but only to a similar one
D̃. That is, the algorithm computes a policy πD̃ based on knowledge of D̃ and we are interested in
the welfareWD (πD̃ ) that this policy achieves on D.
In order to make quantitative statements aboutWD (πD̃ ), we first have to formalize what we

mean by “D and D̃ are similar”. To this end, we will consider metrics on probability distributions.
There are numerous standard ways to define such a metric (see, e.g., [13]). Each of these defines a
distance measure on any pair of probability distributions Di and D̃i . See Figure 2 for an overview
and how the various metrics relate to each other.

Recall that we defined probability distribution Di to be over functions vi : Xi → R≥0. Denoting
the set of such functions by Vi , the probability distribution Di is defined by the probabilities that it
assigns to all Borel sets S ⊆ Vi . For a Borel set S ⊆ Vi , we write Di (S ) for the probability of the
event that the distribution returns a vi ∈ S . Some of the distance measures for distributions also
require a metric to be defined on Vi . For concreteness, we will consider the metric induced by the
ℓ∞-norm. That is, d (vi ,v ′i ) = ∥vi −v ′i ∥∞ = supxi ∈Xi

|vi (xi ) −v ′i (xi ) |.
Since all standard distance measures d on probability distributions are additive, requiring that

d (Di , D̃i ) ≤ ϵ for all i naturally leads to additive guarantees of the formWD (πD̃ ) ≥WD (πD ) −
f (n, ϵ ), where f : N × R≥0 → R≥0 is some function in n and ϵ . We will therefore assume that
valuations are normalized such that vi : Xi → [0, 1] for all i .

3.1 Single Parameter
The first two probability metrics are defined for single-parameter settings. In a single-parameter
setting Xi = [0, 1] and vi (xi ) = v∗i · xi for some parameter v∗i ∈ [0, 1]. In such a setting any
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Acronym Name
TV Total variation distance
P Prokhorov metric
W Wasserstein metric
K Kolmogorov metric
L Lévy metric

A B
h (x ) ⇔ dA ≤ h(dB )

K

L

P

W

TV

x

4x

x

x

x

√
x2x

x

Fig. 2. Relationships among probability metrics (see, e.g., [13]). Dashed lines indicate bounds that rely on
further parameters not considered here.

probability distribution Di on Vi can be identified with the corresponding cumulative distribution
function Fi on [0, 1] via Fi (z) = Prvi∼Di [vi (1) ≤ z].
Similarity of Di and D̃i can now be defined by the similarity of the respective cumulative

distribution functions Fi and F̃i .

Kolmogorov Metric. The Kolmogorov metric bounds the maximum absolute difference between
Fi (z) and F̃i (z) over z ∈ [0, 1]. Formally,

dK (Di , D̃i ) = sup
z∈[0,1]

|Fi (z) − F̃i (z) | .

So requiring that dK (Di , D̃i ) ≤ ϵ corresponds to taking Fi , moving it up and down by ϵ , and
requiring that F̃i is fully contained in the resulting band.

Lévy Metric. The Lévy metric also compares Fi to F̃i , but allows vertical and horizontal shifts.
Namely,

dL (Di , D̃i ) = inf {ϵ : F̃i (z − ϵ ) − ϵ ≤ Fi (z) ≤ F̃i (z + ϵ ) + ϵ for all z ∈ [0, 1]} .
Relationships. The Kolmogorov metric is a stronger requirement than the Lévy Metric. In par-

ticular, whenever dK (Di , D̃i ) ≤ ϵ for some ϵ then also dL (Di , D̃i ) ≤ ϵ and, thus, dL (Di , D̃i ) ≤
dK (Di , D̃i ) [14, p. 34]. The reverse direction is generally unbounded. If, for example, Fi (z) = 1
for z ≥ 0 and 0 otherwise but F̃i (z) = 1 for z ≥ ϵ and 0 otherwise, then dL (Di , D̃i ) = ϵ but
dK (Di , D̃i ) = 1. However, there are still bounds relying on further parameters (see, e.g., [18, p. 43]).

3.2 Beyond Single Parameter
The remaining distance measures apply to the general case, and, e.g., capture the problem of
allocating a set of indivisible items to agents, as in a combinatorial auction. Recall that in this
particular case we would have Xi = 2M , whereM is the set of indivisible items, and Di would be a
distribution over set functions vi : 2M → [0, 1].
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Total Variation Distance. The total variation distance of Di and Di , is defined by

dTV (Di , D̃i ) = sup
S ⊆Vi , S is a Borel set

|Di (S ) − D̃i (S ) | . (1)

The total variation distance has a coupling characterization, which is an implication of Strassen’s
Theorem.

Lemma 3.1 ([20]). For any two distributions Di , D̃i , we have dTV (Di , D̃i ) < ϵ if and only if there
is a joint distribution D∗i over pairs (vi , ṽi ) such that the marginal distributions of vi and ṽi are Di

and D̃i respectively and it holds that Pr [vi , ṽi ] < ϵ .

Prokhorov Metric. To define the Prokhorov metric, we first need to define for a set S ⊆ Vi and
ϵ > 0 its ϵ-neighborhood Sϵ ⊆ Vi by

Sϵ = {vi ∈ Vi | ∃ v ′i ∈ S,d (vi ,v ′i ) < ϵ } .
The Prokhorov metric of Di and D̃i , denoted by dP (Di , D̃i ), is the infimum over all ϵ such that for
all Borel sets S ⊆ Vi we have

Di (S ) ≤ D̃i (S
ϵ ) + ϵ . (2)

The Prokhorov metric is particularly relevant in robust statistics because a sequence of probability
measures weakly converges if and only if the Prokhorov distance to the limit vanishes. Due to
Strassen’s Theorem, it also has a coupling characterization.

Lemma 3.2 ([20]). For any two distributions Di , D̃i , we have dP (Di , D̃i ) < ϵ if and only if there is
a joint distribution D∗i over pairs (vi , ṽi ) such that the marginal distributions of vi and ṽi are Di and
D̃i respectively and it holds that Pr [∥vi − ṽi ∥∞ > ϵ] < ϵ .

Wasserstein Metric. The Wasserstein metric has many equivalent formulations. For example,
for discrete distributions it has the interpretation of an earth mover’s distance. The question is to
transform one distribution into the other by shifting masses in a way that minimzes the sum of
weighted distances.

For our purposes, however, it is most convenient to define it by the existence of a coupling. We
say that theWasserstein metric betweenDi and D̃i , denoted by dW (Di , D̃i ) is the infimum over all
ϵ for which there is a joint distribution D∗i over pairs (vi , ṽi ) such that the marginal distributions
of vi and ṽi are Di and D̃i respectively and it holds that E [∥vi − ṽi ∥∞] < ϵ .

Relationships. The total variation distance when specialized to distributions on [0, 1] requires that
condition (1) is satisfied for all Borel sets, while the Kolmogorov metric only requires this condition
to be satisfied for intervals that start at zero. Therefore, dK (Di , D̃i ) ≤ dTV (Di , D̃i ). Similarly, the
Prokhorov metric when specialized to [0, 1] would require condition (2) to be satisfied for all Borel
sets, while the Lévy metric only requires this condition to be satisfied for intervals that start at
zero. So, dL (Di , D̃i ) ≤ dP (Di , D̃i ). Finally, it is possible to relate the Wasserstein metric when
specialized to distributions on [0, 1] to the Lévy metric, and show that dW (Di , D̃i ) ≤ 4dL (Di , D̃i )
(see the full version of this paper for details).

From the coupling characterizations, it is clear that the total variation distance is always lower-
bounded by the Prokhorov distance, i.e., dTV (Di , D̃i ) ≥ dP (Di , D̃i ), because the requirement on
the coupling is stronger. For this reason, assuming that Di is close to D̃i in the Prokhorov distance
is a weaker assumption than in the total variation distance.
Requiring that two distributions are ϵ-close in the Wasserstein metric is a weaker requirement

than requiring that they are ϵ-close in the total variation distance, i.e., dW (Di , D̃i ) ≤ dTV (Di , D̃i ),
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because for the coupling for which Pr [vi , ṽi ] < ϵ we have E [∥vi − ṽi ∥∞] ≤ Pr [vi = ṽi ] · 0 +
Pr [vi , ṽi ] · 1 = Pr [vi , ṽi ] < ϵ .

Also note that if two distributions are ϵ-close in the Prokhorov metric, then the respective cou-
pling fulfills E [∥vi − ṽi ∥∞] ≤ Pr [∥vi − ṽi ∥∞ < ϵ]+ϵ < 2ϵ . Therefore,dW (Di , D̃i ) ≤ 2dP (Di , D̃i ).
Finally, by Markov’s inequality, E [∥vi − ṽi ∥∞] ≤ ϵ implies Pr

[
∥vi − ṽi ∥∞ >

√
ϵ
]
<
√
ϵ , and there-

fore, dP (Di , D̃i ) ≤
√
dW (Di , D̃i ).

Further Metrics. There are a few other standard distance measures studied in the literature (cf.
[13]), such as Hellinger distance or Kullback-Leibler divergence, which are all polynomially lower-
bounded in the total variation distance. For instance, the Hellinger distance is lower bounded by
the total variation distance while the Kullback-Leibler distance is lower bounded by two times the
total variation distance squared.

We will see that for the strongest possible results, it suffices to require that the distributions are
close in total variation distance (see Section 6).

4 LÉVY, PROKHOROV, ANDWASSERSTEIN METRIC
We begin with the weakest set of assumptions—that the inaccurate priors are close in the Lévy,
Prokhorov, or Wasserstein metric—and show that the optimal policy obtained via backward induc-
tion and balanced prices are robust, while quantile pricing is not.

More specifically, we assume that each of the inaccurate priors D̃i is ϵ-close to the accurate prior
Di , and show the following:
(i) For the optimal policy obtained via backward induction we show that the expected social

welfare that it obtains is at leastWD (π ∗D ) − O (nϵ ), and that the additive error term of O (nϵ ) is
asymptotically sharp even under the most stringent assumption that each of the distributions is
ϵ-close in total variation distance.

(ii) For balanced prices we show that, if the approach guarantee an expected social welfare of at
least γ · E [OPT(v )], γ ∈ [0, 1] on the accurate priors, then on the inaccurate priors it will obtain an
expected social welfare of at least γ · E [OPT(v )] −O (nϵ ). Again, this additive error term of O (nϵ )
is asymptotically tight even if we assume that the inaccurate priors are ϵ-close in total variation
distance.
(iii) We show that the expected social welfare obtained by quantile pricing, when tuned to

inaccurate priors, can be arbitrarily worse than what the respective approach would yield with
accurate priors.
We think that the linear error term in (i) is somewhat surprising as it shows that the errors

in each distribution do not propagate (and lead to a super-linear error term) as one may have
suspected. Our results in (ii) apply even if the balanced prices obtained on the inaccurate priors
and those obtained on the accurate priors are far apart. They thus strengthen previous robustness
results in [11] and [10], which showed an additive error term of O (nϵ ) when ∥p − p̃∥ ≤ ϵ .

4.1 Backward Induction
We state and prove our main result in this section. It concerns the backward-induction policy π ∗D̃ for
inaccurate distributions D̃, where each D̃i is ϵ-close to the accurate distributionDi according to the
Wasserstein metric. It shows that the welfareWD (π ∗D̃ ) obtained by this policy on the true underlying
distributionsD is within 2nϵ of the (optimal) welfareWD (π ∗D ) obtained by the backward-induction
policy π ∗D for these distributions.

Theorem 4.1. If dW (Di , D̃i ) < ϵ for all i , thenWD (π ∗D̃ ) ≥WD (π
∗
D ) − 2nϵ .
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An immediate implication of this theorem and the fact that dW (Di , D̃i ) ≤ 2dP (Di , D̃i ) and
dW (Di , D̃i ) ≤ 4dL (Di , D̃i ) is that the same (up to constant factors) additive error term holds for
the Prokhorov and Lévy metric.

Corollary 4.2. IfdP (Di , D̃i ) < ϵ for all i ordL (Di , D̃i ) < ϵ for all i , thenWD (π ∗D̃ ) ≥WD (π
∗
D )−

O (nϵ ).

Our proof of Theorem 4.1 will make use of the existence of couplings D∗i between each pair
of distributions Di and D̃i such that E [∥vi − ṽi ∥∞] < ϵ . Specifically, for each i we will assume
that the pair of valuation functions (vi , ṽi ) is drawn from distribution D∗i . All probabilities and
expectations are over these joint distributions.
To prove the theorem we proceed in two steps. First, in Lemma 4.3, we show thatWD̃ (π

∗
D̃ ) ≥

WD (π ∗D )−nϵ . That is, we show that the values that the optimal policies for D̃ andD achieve on the
respective distributions is close. Afterwards, in Lemma 4.4, we show thatWD (π ∗D̃ ) ≥WD̃ (π

∗
D̃ ) −nϵ .

This means that we evaluate the policy that is optimal for D̃ on D but compare it to the value that
it achieves on D̃.

Lemma 4.3. If dW (Di , D̃i ) < ϵ for all i , thenWD̃ (π
∗
D̃ ) ≥WD (π

∗
D ) − nϵ .

Proof. We show that for all i ∈ [n + 1] and all x ′1, . . . x ′i−1,
WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1) ≥WD (π ∗D ,x ′1, . . . ,x ′i−1) − (n − i + 1)ϵ

by downward induction on i .
The base case for our induction is i = n + 1. In this case, we haveWD (π ,x ′1, . . . ,x ′i−1) = 0 and

WD̃ (π ,x
′
1, . . . ,x

′
i−1) = 0 for any policy π , so the claim holds.

In the induction step, we consider a fixed i ∈ [n + 1] and x1, . . . xi−1 and we assume that the
statement holds for i + 1.

Let
xi = π ∗D (vi ,x

′
1, . . . ,x

′
i−1) and x̃i = π ∗D̃ (ṽi ,x

′
1, . . . ,x

′
i−1)

be the choices of the respective optimal policies given that the allocations for agents 1, . . . , i − 1
are x ′1, . . . ,x ′i−1. Note that these are defined such that x̃i maximizes

ṽi (x̃i ) +WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i ) .

So, therefore
ṽi (x̃i ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i ) ≥ ṽi (xi ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1,xi ) .

OnWD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1,xi ), we can apply the induction hypothesis. Furthermore, ṽi (xi ) ≥ vi (xi )−

∥ṽi −vi ∥∞. This combines to
ṽi (x̃i ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i ) ≥ vi (xi ) +WD (π ∗D ,x

′
1, . . . ,x

′
i−1,xi ) − (n − i )ϵ − ∥ṽi −vi ∥∞ .

Taking the expectation of both sides, we get

WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1) = E

[
ṽi (x̃i ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i )

]

≥ E
[
vi (xi ) +WD (π ∗D ,x

′
1, . . . ,x

′
i−1,xi )

]
− (n − i )ϵ − E [∥ṽi −vi ∥∞]

=WD (π ∗D ,x
′
1, . . . ,x

′
i−1) − (n − i )ϵ − E [∥ṽi −vi ∥∞] .

Hence, by assumption,WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1) ≥WD (π ∗D ,x ′1, . . . ,x ′i−1)− (n−i+1)ϵ , as required. □

Lemma 4.4. If dW (Di , D̃i ) < ϵ for all i , thenWD (π ∗D̃ ) ≥WD̃ (π
∗
D̃ ) − nϵ .
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Proof. As in the proof of the previous lemma, we proceed by induction. This time we show that
for all i ∈ [n + 1] and all x ′1, . . . ,x ′i−1,

WD (π ∗D̃ ,x
′
1, . . . ,x

′
i−1) ≥WD̃ (π ∗D̃ ,x

′
1, . . . ,x

′
i−1) − (n − i + 1)ϵ

by downward induction on i .
Again, the base case is i = n + 1. In this case, we have thatWD (π ∗D̃ ,x

′
1, . . . ,x

′
i−1) = 0 and

WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1) = 0, so the claim holds.

For the induction step, consider any fixed i and x ′1, . . . ,x ′i−1. This time, we define

xi = π ∗D̃ (vi ,x
′
1, . . . ,x

′
i−1) and x̃i = π ∗D̃ (ṽi ,x

′
1, . . . ,x

′
i−1)

to be the choices of π ∗D̃ if the valuation of agent i is vi or ṽi , respectively.
By definition,

WD (π ∗D̃ ,x
′
1, . . . ,x

′
i−1) = E

[
vi (xi ) +WD (π ∗D̃ ,x

′
1, . . . ,x

′
i−1,xi )

]
and

WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1) = E

[
ṽi (x̃i ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i )

]
.

Furthermore,

ṽi (x̃i ) +WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i ) ≤ vi (x̃i ) + ∥ṽi −vi ∥∞ +WD̃ (π ∗D̃ ,x

′
1, . . . ,x

′
i−1, x̃i )

Recall that xi maximizes vi (xi ) +WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1,xi ) because π ∗D̃ is an optimal policy for

distribution D̃, so in particular,

vi (x̃i ) +WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i ) ≤ vi (xi ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1,xi ) .

Finally, by the induction hypothesis,

WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1,xi ) ≤WD (π ∗D̃ ,x

′
1, . . . ,x

′
i−1,xi ) + (n − i )ϵ .

In combination

WD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1) = E

[
ṽi (x̃i ) +WD̃ (π

∗
D̃ ,x

′
1, . . . ,x

′
i−1, x̃i )

]

≤ E
[
vi (x̃i ) + ∥ṽi −vi ∥∞ +WD̃ (π ∗D̃ ,x

′
1, . . . ,x

′
i−1, x̃i )

]

≤ E
[
vi (xi ) + ∥ṽi −vi ∥∞ +WD̃ (π ∗D̃ ,x

′
1, . . . ,x

′
i−1,xi )

]

≤ E
[
vi (xi ) + ∥ṽi −vi ∥∞ +WD (π ∗D̃ ,x

′
1, . . . ,x

′
i−1,xi ) + (n − i )ϵ

]

=WD (π ,x ′1, . . . ,x
′
i−1) + (n − i )ϵ + E [∥ṽi −vi ∥∞] .

By assumption, E [∥ṽi −vi ∥∞] < ϵ . We obtainWD̃ (π
∗
D̃ ,x

′
1, . . . ,x

′
i−1) ≤WD (π ,x ′1, . . . ,x ′i−1) + (n −

i + 1)ϵ as claimed. □

Proof of Theorem 4.1. By Lemma 4.4 and Lemma 4.3,

WD (π ∗D̃ ) ≥WD̃ (π
∗
D̃ ) − nϵ ≥WD (π

∗
D ) − 2nϵ . □

We conclude by showing that even under the more stringent assumption of closeness under
total variation distance, the additive error term of O (nϵ ) in Theorem 4.1 and Corollary 4.2 is
asymptotically sharp.

Proposition 4.5. Even for a single item for all n ≥ 2 and 0 < ϵ ≤ 1
n , there are distributions D, D̃

with dTV (Di , D̃i ) ≤ ϵ for all i such thatWD (π ∗D̃ ) ≤WD (π
∗
D ) − 1

3nϵ .
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Proof. Define distributions D and D̃ with dTV (Di , D̃i ) ≤ ϵ as follows. In both distributions
the first value is deterministic, and equal to nϵ/3. In D the remaining n − 1 values are equal to 0. In
D̃ they are 1 with probability ϵ and 0 otherwise.
The backward induction policy π ∗D for D accepts the first value, and hasWD (π ∗D ) = nϵ/3. The

backward induction policy π ∗D̃ for D̃ skips the first value and then accepts the first value that is 1,
achievingWD̃ (π

∗
D̃ ) = 1 − (1 − ϵ )n−1 > nϵ/3 butWD (π ∗D̃ ) = 0. □

4.2 Balanced Prices
We next consider the technique of setting balanced prices, which leads to posted-price mechanisms
that are approximately optimal. We show that social welfare guarantees obtained through this
technique for accurate priors D1, . . . ,Dn continue to hold up to an additive error of O (nϵ ) when
prices are set based on inaccurate priors D̃1, . . . , D̃n that are ϵ-close to the accurate priors in the
Lévy, Prokhorov, or Wasserstein metric. We complement this result with a construction that shows
that this error term is asymptotically tight.

While our results hold in the most general version of the balanced prices framework developed
in [10], we will present them for problems that can be cast as constrained item allocation problems
for ease of exposition.
In such a problem we are given a set of items M , agents can receive subsets of items so that

Xi = 2M for all i , and feasible allocations F ⊆ X1 × · · · ×Xn consist of disjoint allocations of items
that may be required to satisfy additional constraints. Note that both combinatorial auctions and
matroids can be captured this way.
To define balanced prices we need the following definitions. For x ∈ F let Fx be the set of all

x ′ ∈ F such that x ′ can still be carried out after x . Formally, this means that the two allocations x ,
x ′ are disjoint, i.e., xi ∩ x ′i′ = ∅ for all i , i ′, and their component-wise union is feasible, i.e., x ∪ x ′ :=
(x1 ∪ x ′1, . . . ,xn ∪ x ′n ) ∈ F . For a given valuation profile v , define OPT(v ) = argmaxx ∈F

∑
i vi (xi )

andv (OPT(v )) = maxx ∈F
∑

i vi (xi ). Similarly, for a given valuation profilev and feasible allocation
x ∈ F , define OPT(v | x ) = argmaxx ′∈Fx

∑
i vi (x

′
i ) and v (OPT(v | x )) = maxx ′∈Fx

∑
i vi (x

′
i ).

Definition 4.6 ([10]). Let α > 0, β > 0. Given valuation profile v , a pricing rule pv is (α , β )-
balanced if for all x ∈ F and all x ′ ∈ Fx ,

(a) ∑i p
v
i (xi | x1, . . . ,xi−1) ≥ 1

α · (v (OPT(v )) −v (OPT(v | x ))), and
(b) ∑i p

v
i (x

′
i | x1, . . . ,xi−1) ≤ β · v (OPT(v | x )).

A collection of pricing rules (pv )v ∈V is (α , β )-balanced if for each v ∈ V = V1 × · · · ×Vn the pricing
rule pv is (α , β )-balanced.

Dütting et al. [10] show that if (pv )v ∈V is (α , β )-balanced then the posted-prices mechanism πD
based on δ · pD defined by pDi (xi | y) = Ev ′∼D

[
pv
′

i (xi | y)
]
and δ = α

1+α β fulfills,

WD (πD ) ≥ 1
1 + αβ · Ev∼D


max
x ∈F

n∑
i=1

vi (xi )

.

Dütting et al. [10] also observe that balanced prices are robust in that if the pricing rule p is
perturbed to some p̂ with ∥p − p̂∥∞ ≤ ϵ , then the welfare guarantee degrades by at most an additive
O (nϵ ) term.

We start with the observation that, even if dP (D̃i ,Di ) ≤ ϵ for all i , balanced prices p̃ that are
computed based on D̃1, . . . , D̃n can be far apart from the respective prices p that are computed
based on D1, . . . ,Dn .
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Example 4.7. Consider the posted-price mechanism of [11] for two agents, two items setting in
which the agents i ∈ {1, 2} have unit demand valuations, i.e., vi (∅) = 0, vi ({j}) = vi, j for j ∈ {1, 2},
and vi ({1, 2}) = max{vi,1,vi,2}.
Specialized to this scenario the mechanism of Feldman et al. computes (1,1)-balanced prices by

computing a social welfare maximizing allocation, and setting the (unscaled) price of item j to the
valuation vi, j of the agent i that is assigned this item.

Consider the following full information settings D and D̃ with dP (Di , D̃i ) ≤ ϵ for all i . In D
agent 1 has a value of v1 ({1}) = 1 for item 1 and value v1 ({2}) = 0 for item 2 and agent 2 has a
value of v2 ({1}) = 2 − ϵ/2 for item 1 and a value of v2 ({2}) = 1 for item 2. In D̃ the values of agent
1 are unchanged so that ṽ1 ({j}) = v1 ({j}) for j ∈ {1, 2} and agent 2 has a value of ṽ2 ({1}) = 2 + ϵ/2
for item 1 and a value of ṽ2 ({2}) = 1 for item 2.

ForD the welfare maximizing allocation gives item 1 to agent 1 and item 2 to agent 2, resulting in
(unscaled) prices of p ({1}) = 1 and p ({2}) = 1. In D̃, in contrast, the welfare maximizing allocation
gives item 1 to agent 2 and item 2 to agent 1, resulting in (unscaled) prices of p̃ ({1}) = 2 + ϵ/2 and
p̃ ({2}) = 0. Hence ∥p − p̃∥∞ = 1 + ϵ/2.

Note that this example uses the fact that prices are discontinuous in the valuations. Indeed, as we
demonstrate in the full version of this paper, under a continuity assumption prices are guaranteed
to be close. Nonetheless, despite this potential non-proximity in price space we have:

Theorem 4.8. Let πD̃ be a posted-price mechanism based on an (α , β )-balanced pricing rule using
priors D̃. If dW (D̃i ,Di ) < ϵ for all i , then

WD (πD̃ ) ≥
1

1 + αβ · Ev∼D

max
x ∈F

n∑
i=1

vi (xi )

− 2nϵ .

Since dW (Di , D̃i ) ≤ 2dP (Di , D̃i ) and dW (Di , D̃i ) ≤ 4dL (Di , D̃i ) we obtain the following
corollary for the Prokhorov and Lévy metric.

Corollary 4.9. If dP (D̃i ,Di ) < ϵ for all i or dL (D̃i ,Di ) < ϵ for all i , then the posted-price
mechanism πD̃ defined based on D̃ fulfills

WD (πD̃ ) ≥
1

1 + αβ · Ev∼D

max
x ∈F

n∑
i=1

vi (xi )

−O (nϵ ) .

To prove Theorem 4.8, we follow generally the same argument as in [10], which uses Property
(b) to show a lower bound on the utility and Property (a) to show a lower bound on the revenue
and then combines these into a welfare guarantee.
The difference is that the distribution for valuations D differs from the distribution used to

define the prices D̃. As we have already seen this can make prices differ significantly. However,
this is not true for the right-hand sides of Property (a) and Property (b) in expectation. Indeed, we
can show the following lemma.

Lemma 4.10. Consider any x ∈ F . If dW (Di , D̃i ) < ϵ for all i , then for v ∼ D, ṽ ∼ D̃ we have

E [ṽ (OPT(ṽ | x ))] ≥ E [v (OPT(v | x ))] − nϵ .
Proof. Note that ṽi (x ′i ) ≥ vi (x

′
i ) − ∥vi − ṽi ∥∞ for all x ′i . So also

ṽ (OPT(ṽ | x )) = max
x ′∈Fx

n∑
i=1

ṽi (x
′
i ) ≥ max

x ′∈Fx

n∑
i=1

(
vi (x

′
i ) − ∥vi − ṽi ∥∞

)
= v (OPT(v | x ))−

n∑
i=1
∥vi−ṽi ∥∞ .
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As we have E [∥vi − ṽi ∥∞] < ϵ by assumption, linearity of expectation gives us

E [ṽ (OPT(ṽ | x ))] ≥ E [v (OPT(v | x ))] −
n∑
i=1

E [∥vi − ṽi ∥∞] ≥ E [v (OPT(v | x ))] − nϵ . □

Based on this lemma, we can now follow the same steps as in [10] with only minor modifications.
We present the full argument here for completeness.

Proof of Theorem 4.8. The argument in [10] considers three valuation profiles v,v ′, and ṽ .
The first profile is the one the mechanism is run on, the second one is used to construct potential
deviations, and the final one defines the prices. In the original proof these are identically distributed,
we instead consider v,v ′ ∼ D and ṽ ∼ D̃.

We will write x (v ) for the allocation returned by the posted-price mechanism on input valuation
profile v , and x[i−1] (v ) for x1 (v ), . . . ,xi−1 (v ). We use p̃ as a shorthand for p D̃ .
Utility bound: We obtain a lower bound on the expected utility of an agent as follows. We
sample valuations v ′ ∼ D. Agent i now considers buying OPTi ((vi ,v ′−i ) | x (v ′i ,v−i )) at price
δ ·p̃i (OPTi ((vi ,v ′−i ) | x (v ′i ,v−i )) | x[i−1] (v )). Taking expectations and exploiting that x[i−1] (v ) does
not depend on vi we obtain

Ev [ui (v )] ≥ Ev,v ′
[
vi

(
OPTi ((vi ,v ′−i ) | x (v ′i ,v−i ))

)
− δ · p̃i

(
OPTi ((vi ,v ′−i ) | x (v ′i ,v−i ))

���� x[i−1] (v )
)]

= Ev,v ′
[
v ′i
(
OPTi (v ′ | x (v ))

)
− δ · p̃i

(
OPTi (v ′ | x (v ))

���� x[i−1] (v )
)]
.

Summing the previous inequality over all agents we get

Ev


n∑
i=1

ui (v )

≥ Ev,v ′



n∑
i=1

v ′i
(
OPTi (v ′ | x (v ))

) − Ev,v ′


n∑
i=1

δ · p̃i
(
OPTi (v ′ | x (v ))

���� x[i−1] (v )
)

= Ev,v ′
[
v ′
(
OPT(v ′ | x (v ))

)]
− Ev,v ′



n∑
i=1

δ · p̃i
(
OPTi (v ′ | x (v ))

���� x[i−1] (v )
) .

(3)
We can upper bound the last term in the previous inequality by using Property (b). This gives

n∑
i=1

δ · p̃i
(
OPTi (v ′ | x (v ))

���� x[i−1] (v )
)
≤ δβ · Eṽ

[
ṽ
(
OPT(ṽ | x (v ))

)]
pointwise for any v and v ′, and therefore also

Ev,v ′


n∑
i=1

δ · p̃i
(
OPTi (v ′ | x (v ))

���� x[i−1] (v )
) ≤ δβ · Ev,ṽ

[
ṽ
(
OPT(ṽ | x (v ))

)]
. (4)

As v ′ and ṽ are not identically distributed, the last step in the original argument cannot be applied.
Instead, combining (3) with (4), we get

Ev


n∑
i=1

ui (v )

≥ Ev,v ′

[
v ′(OPT(v ′ | x (v ))] − δβ · Ev,ṽ [ṽ (OPT(ṽ | x (v ))] . (5)

Revenue bound: For the revenue bound we can proceed in the original proof. In particular, by
applying Property (a),

n∑
i=1

δ · p̃i (xi (v ) | x[i−1] (v )) = δ ·
n∑
i=1

Eṽ
[
pṽi (xi (v ) | x[i−1] (v ))

]
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≥ δ

α
· Eṽ [ṽ (OPT(ṽ )) − ṽ (OPT(ṽ | x (v )))] .

Taking expectation over v this shows

Ev


n∑
i=1

δ · p̃i (xi (v ) | x[i−1] (v ))

≥ δ

α
· Eṽ [ṽ (OPT(ṽ ))] − δ

α
· Ev,ṽ [ṽ (OPT(ṽ | x (v )))] . (6)

Combination: We conclude by combining the utility and revenue bounds (5) and (6). Using
δ = α

1+α β we get

WD (πD̃ ) = Ev


n∑
i=1

vi (xi (v ))

= Ev



n∑
i=1

ui (v )

+ Ev



n∑
i=1

δ · p̃i (xi (v ) | x[i−1] (v ))


≥ Ev,v ′
[
v ′(OPT(v ′ | x (v ))] − δβ · Ev,ṽ [ṽ (OPT(ṽ | x (v ))]

+
δ

α
· Eṽ [ṽ (OPT(ṽ )] − δ

α
· Ev,ṽ [ṽ (OPT(ṽ | x (v )]

≥ 1
1 + αβ Eṽ

[ṽ (OPT(ṽ )] + Ev,v ′
[
v ′(OPT(v ′ | x (v ))] − Ev,ṽ [ṽ (OPT(ṽ | x (v ))] .

By Lemma 4.10,we have that

Eṽ [ṽ (OPT(ṽ )] ≥ Ev [v (OPT(v )] − nϵ .
As the Wasserstein distance is symmetric, we can also swap the roles of D̃ and D in Lemma 4.10.
We therefore also have for any fixed v

Eṽ [ṽ (OPT(ṽ | x (v ))] ≤ Ev ′
[
v ′(OPT(v ′ | x (v ))] + nϵ .

In combination, this gives us

WD (πD̃ ) ≥
1

1 + αβ · Ev [OPT(v )] − 2nϵ . □

The error bound of Θ(nϵ ) is again tight, even under the strongest assumption of ϵ-closeness
under total variation distance. This is true even for the mechanism of Kleinberg and Weinberg [15]
for a single item, the prototypical example of balanced prices, which sets the price to 1/2 of the
expected optimal social welfare.

Proposition 4.11. Even for a single item and the policy π of Kleinberg and Weinberg [15], for all
n ≥ 2, 0 < ϵ ≤ 1

n , and δ > 0 there are distributions D, D̃ with dTV (Di , D̃i ) ≤ ϵ for all i such that
WD (πD̃ ) ≤ (1/(1 + αβ )) · Ev∼D [maxx ∈F

∑
i vi (xi )] − 1

6nϵ + δ .

Proof. Consider the single-item setting with n ≥ 2 agents from Proposition 4.5 with the roles
of D and D̃ interchanged, and with the value of the first agent set to δ . That is, in both D and D̃
the value of the first agent is deterministic, and equal to δ . In D the value of each of the remaining
n − 1 agents is 1 with probability ϵ , and 0 otherwise. In D̃ the value of the remaining n − 1 agents
is deterministic and equal to 0.

Now consider the mechanism of Kleinberg and Weinberg [15] for this setting, which computes
(1, 1)-balanced prices. This mechanisms sets the (scaled) price of the item to 1/2 of the expected
optimal social welfare. So the price computed on D̃ is δ/2, which achieves the same expected social
welfareWD̃ (πD̃ ) andWD (πD̃ ) on D̃ and D, namely δ . The expected optimal social welfare on D,
in contrast, is Ev∼D [maxi vi ] ≥ 1 − (1 − ϵ )n−1 > nϵ/3 and so 1/2 · Ev∼D [maxi vi ] > nϵ/6. □
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4.3 Quantile Pricing
Besides approaches defining balanced prices, the other standard approach to define approximate
policies is to make decisions such that probabilities of certain events have certain values. We
subsume this class of approaches under the term quantile pricing. Examples are the single-item
prophet inequality proof by Samuel-Cahn [19], which sets a price such that the sequence is stopped
with probability exactly 1

2 . Other examples include the recent results on single-item i.i.d. prophet
inequalities [1, 9], the prophet inequalities of [2] and [3] for unit-demand agents, and more generally
approaches based on online contention resolution schemes [12].

Unfortunately, as it turns out, quantile pricing is usually not robust to deviations to neighboring
distributions with respect to the Prokhorov metric.

Proposition 4.12. Even for the single-item setting and the policy π of Samuel-Cahn [19], for every
n ≥ 2 and every ϵ > 0 there exists distributions D and D̃ with dP (Di , D̃i ) ≤ ϵ for all i such that
WD (πD̃ ) = 0 but Ev∼D [maxi vi ] ≥WD (π ∗D ) ≥ 1 − 2ϵ .

Proof. We consider only a single item and only a single buyer. Given any ϵ > 0, let D =
Uniform[1 − 2ϵ, 1 − ϵ] and D̃ = Uniform[1 − ϵ, 1]. Observe that dP (D, D̃) ≤ ϵ . The policy π

that ensures that the sequence is stopped with probability 1/2 on distribution D̃ uses threshold
τ = 1 − ϵ

2 . So, WD (π ) = 0 because the sequence never gets stopped. This is in contrast to
Ev∼D [maxi vi ] ≥ 1 − 2ϵ andWD (π ∗D ) ≥ 1 − 2ϵ . □

5 KOLMOGOROV METRIC
In this section, we strengthen our assumptions and derive a much stronger guarantee. We consider
single-parameter settings. That is, Xi = [0, 1] and vi (xi ) = v∗i · xi for all i . That is, each agent’s
valuation is completely described by one real number v∗i . Note that the single-item setting but also
matroid constraints can be captured this way.
We consider policies induced by a posted-price mechanism. We show that any such policy is

robust with respect to deviations in the Kolmogorov metric by showing the following theorem.
Theorem 5.1. Consider a single-parameter setting and a policy π induced by a posted-price mecha-

nism. If dK (Di , D̃i ) ≤ ϵ for all i , thenWD (π ) ≥WD̃ (π ) − nϵ .
An implication of the previous theorem is that guarantees with respect to the expected optimal

value and the optimal policy via backward induction are preserved.
Indeed, if π guarantees that WD̃ (π ) ≥ αEṽ∼D̃ [OPT(ṽ )] or WD̃ (π ) ≥ αWD̃ (π

∗
D̃ ) for some

0 < α ≤ 1, then alsoWD (π ) ≥ αEv∼D [OPT(v )]−5nϵ by Lemma 4.10 orWD̃ (π ) ≥ αWD (π ∗D )−5nϵ
by Lemma 4.3 respectively.

Proof of Theorem 5.1. We prove this theorem by downward induction and show that for all
i ∈ [n + 1] and all x ′1, . . . ,x ′i−1 we have

WD (π ,x ′1, . . . ,x
′
i−1) ≥WD̃ (π ,x ′1, . . . ,x ′i−1) − (n − i + 1)ϵ .

For i = n + 1, we have
WD (π ,x ′1, . . . ,x

′
i−1) =WD̃ (π ,x

′
1, . . . ,x

′
i−1) = 0

for all x ′1, . . . ,x ′i−1, so the claim holds.
Let us now consider an i < n + 1. For a fixed choice of x ′1, . . . ,x ′i−1, define xi (vi ) = pi (1 |

x ′1, . . . ,x
′
i−1). By this definition

vi (π (vi ,x
′
1, . . . ,x

′
i−1)) +WD (π ,x

′
1, . . . ,x

′
i−1,π (vi ,x

′
1, . . . ,x

′
i−1))

= vi (xi (vi )) +WD (π ,x ′1, . . . ,x
′
i−1,xi (vi ))
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and therefore also

WD (π ,x ′1, . . . ,x
′
i−1) = Evi∼D

[
vi (xi (vi )) +WD (π ,x ′1, . . . ,x

′
i−1,xi (vi ))

]
.

By induction hypothesis, we haveWD (π ,x ′1, . . . ,x ′i−1,xi (vi )) ≥WD̃ (π ,x ′1, . . . ,x ′i−1,xi (vi ))−(n−i )ϵ
because x ′1, . . . ,x ′i−1 and vi are fixed.
Due to the fact that π is defined by posted prices, we have that xi (vi ) ≥ x ′′i if and only if

vi (xi (vi )) − pi (xi (vi ) | x ′1, . . . ,x ′i−1) ≥ vi (x
′′
i ) − pi (x ′′i | x ′1, . . . ,x ′i−1) .

Because vi is non-decreasing, xi (·) has to be a non-decreasing function. Therefore, we have
vi (xi (vi )) > t if vi (1) ∈ I , where I is an interval of the form [t ′,∞) or (t ′,∞). We can use
dK (Di , D̃i ) ≤ ϵ to get

Prvi∼Di [vi (xi (vi )) ≥ t] = Prvi∼Di [vi (1) ∈ I ]
≥ Prṽi∼Di [vi (1) ∈ I ] − ϵ = Prṽi∼Di [vi (xi (vi )) ≥ t] − ϵ .

This implies

Evi∼Di [vi (xi (vi ))] =
∫ 1

0
Prvi∼Di [vi (xi (vi )) ≥ t] dt

≥
∫ 1

0

(
Prvi∼D̃i

[vi (xi (vi )) ≥ t] − ϵ
)
dt = Evi∼D̃i

[vi (xi (vi ))] − ϵ .

In combination

WD (π ,x ′1, . . . ,x
′
i−1) ≥WD̃ (π ,x ′1, . . . ,x ′i−1) − (n − i + 1)ϵ . □

The error term in Theorem 5.1 is tight:

Proposition 5.2. Even for a single item for all n ≥ 2 and 0 < ϵ ≤ 1
n , there are distributions D, D̃

with dTV (Di , D̃i ) ≤ ϵ for all i such thatWD (π ∗D̃ ) ≤WD̃ (π
∗
D̃ ) −

1
3nϵ .

Proof. We define the distributions D and D̃ with dTV (Di , D̃i ) ≤ ϵ as follows. In D all n values
are equal to 0. In D̃ they are 1 with probability ϵ and 0 otherwise.
The policy π ∗D̃ accepts the first agent with value 1. Therefore,WD̃ (π

∗
D̃ ) = 1 − (1 − ϵ )n > nϵ/3.

However, clearlyWD (π ∗D̃ ) = 0 regardless of the policy. □

We conclude this section by observing that Theorem 5.1 does not hold for arbitrary policies π ,
which are not defined by thresholds.

Example 5.3. Consider the setting of only a single agent and a single item. For any k ∈ N,
define D1 = Uniform{ 1k , 2k , . . . , 1} and D̃1 = Uniform[0, 1]. Note that for all t ∈ R we have
Prv1∼D1 [v1 ≤ t] ≤ Prv1∼D̃1

[v1 ≤ t] ≤ Prv1∼D1 [v1 ≤ t] + 1
k , so dK (D1, D̃1) ≤ 1

k . Now consider
the policy π , which accepts any agent unless their value is a multiple of 1

k . We observe that
WD (π ) = 0 butWD̃ (π ) =

1
2 , regardless of the value of k .

6 TOTAL VARIATION DISTANCE
In this section, we discuss the consequences of the distributions being close with respect to the
total variation distance. As we will show, every policy is robust against such deviations.

Theorem 6.1. Consider any policy π . If dTV (Di , D̃i ) < ϵ for all i , thenWD (π ) ≥WD̃ (π ) − n2ϵ .
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As in the case of Theorem 5.1, Theorem 6.1 implies that guarantees with respect to the expected
optimal value or the optimal policy via backward induction are preserved up to an additive O (n2ϵ )
term.

Proof of Theorem 6.1. We use the fact that the total variation distance has a coupling charac-
terization (Lemma 3.1). We have dTV (Di , D̃i ) < ϵ if and only if there is a joint distribution over
pairs (vi , ṽi ) such that vi is distributed according to Di and ṽi is distributed according to D̃i and
Pr [vi , ṽi ] < ϵ .
By drawing from each of these joint distributions once, we get a probability distribution over

valuation profiles such that, by union bound, Pr [∃i : vi , ṽi ] < nϵ . That is, running π in parallel on
v1, . . . ,vn and ṽ1, . . . , ṽn , with probability at least 1 −nϵ these executions are the same. Otherwise,
we use the trivial upper bound of n on the difference. □

The bound in Theorem 6.1 is again tight:
Proposition 6.2. There exists a policy π and a single-parameter setting such that for every n ≥ 2,

0 ≤ ϵ < 1/n, and δ > 0 there are distributions D and D̃ with dTV (Di , D̃i ) ≤ ϵ for all i for which
WD (π ) ≤WD̃ (π ) − Ω(ϵn2) + nϵδ .

Proof. Consider the following binary single-parameter setting: Either {1, . . . , n2 } or { n2 , . . . ,n}
can be accepted simultaneously as well as any subset. Let π be the greedy policy that accepts the
first agent who has a strictly positive value and following agents if their value is positive and it
would be feasible to add the agent.

We now define the distributions D and D̃. Let δ > 0. For i ≤ n
2 , we choose ṽi (1) to be 0 with

probability 1. Define ṽi (1) = δ with probability ϵ and 0 otherwise. By this choice dTV (Di , D̃i ) = ϵ
regardless of δ . Furthermore, for i > n

2 , we define vi (1) and ṽi (1) to be 1 with probability 1.
Observe thatWD (π ) ≤ n

2 − Ω(ϵn2) + nϵδ butWD̃ (π ) =
n
2 for any δ > 0 if ϵ ≤ 1

n . □
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