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1. INTRODUCTION

A canonical problem in mechanism design is the design of economically efficient auc-
tions that satisfy individual rationality and incentive compatibility. When utilities are
quasi-linear these goals are achieved by the Vickrey-Clarke-Groves (VCG) mechanism.
In many practical situations, including settings in which the agents have budget lim-
its, quasi-linearity is violated and, thus, the VCG mechanism is not applicable.
Ausubel [2004] describes an ascending-bid auction for homogeneous items that
yields the same outcome as the sealed-bid Vickrey auction, but offers advantages in
terms of simplicity, transparency, and privacy preservation. In his concluding remarks
he points out that “when budgets impair the bidding of true valuations in a sealed-bid
Vickrey auction, a dynamic auction may facilitate the expression of true valuations
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0:2 P. Ditting et al.

while staying within budget limits” (p. 1469). [Dobzinski et al.| [2012] show that an
adaptive version of Ausubel’s “clinching auction” is indeed the unique mechanism that
satisfies individual rationality, Pareto optimality, and incentive compatibility in set-
tings with public budgets. They use this fact to show that there can be no mechanism
that achieves those properties for private budgets. An important restriction of Dobzin-
ski et al.’s impossibility result for private budgets is that it only applies to determinis-
tic mechanisms. In fact, as Bhattacharya et al.|[2010]] show, there exists a randomized
mechanism for homogeneous items that is individual rational, Pareto optimal, and
incentive compatible with private budgets.

As|Ausubel| [2006] points out, “situations abound in diverse industries in which het-
erogeneous (but related) commodities are auctioned” (p. 602). He also describes an
ascending-bid auction, the “crediting and debiting auction”, that takes the place of
the “clinching auction” when items are heterogeneous. Positive and negative results
for deterministic mechanisms and public budgets that apply to heterogeneous items
are given in [Fiat et al.[[2011}; |Lavi and May||2012; Goel et al.|2012; Colini-Baldeschi
et al.|2012]]. We focus on randomized mechanisms for heterogeneous items, and prove
positive results for private budgets and negative results for public budgets. We thus
explore the power and limitations of randomization in this setting.

1.1. Our Contribution

We analyze two settings with heterogeneous items and additive valuations. In the first
setting the valuations are single-dimensional in that each agent has a valuation, each
item has a quality, and an agent’s valuation for an item is the product of the item’s
quality and the agent’s Valuation In the second setting the valuations are multi-
dimensional in that each agent has an arbitrary, non-negative valuation for each item.
In both cases we analyze whether a deterministic or randomized mechanism exists
that satisfies individual rationality (IR), Pareto optimality (PO), and incentive com-
patibility (IC). For both types of mechanisms we distinguish between settings with
public budgets and settings with private budgets. For randomized mechanisms the cor-
responding properties can either be satisfied ex interim or they can be satisfied ex post.
The former requires that the property is satisfied in expectation over the outcomes the
randomized mechanism produces, while the latter requires that it is satisfied by every
possible outcome of the mechanism.

(a) For single-dimensional valuations we present a deterministic mechanism for
divisible items that is IR, PO, and IC with public budgets and a randomized mech-
anism for both divisible and indivisible items that is IR ex interim, PO ex post, and
IC ex interim with private budgets. These mechanisms also satisfy another desirable
property, namely “no positive transfers” (NPT), which requires that the individual pay-
ments are non-negative. We obtain these mechanisms through a general reduction
from the setting with multiple, heterogeneous items to the setting of a single and by
definition homogeneous item. This allows us to apply the mechanisms for this setting
presented in [Bhattacharya et al.[[2010]. The main difficulty in showing that the re-
sulting deterministic and randomized mechanisms for multiple items have the desired
properties is to show that they satisfy PO resp. PO ex post. For this we argue that the
reduction preserves a certain structural property of the mechanisms for a single item.

1Such valuations arise whenever the agents agree about the relative values of the items. One concrete
example is an auction in which display ads are sold in bulks consisting of a certain number of impressions
together with per-impression valuations. Another example are auctions in which display ads of different size
are sold and the valuations are proportional to size. In both cases the respective per-item valuations are the
product of the item’s quality, either the number of impressions or the size, and the agent’s valuation, either
per impression or per pixel.
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We connect this structural property to a novel “no trade” (NT) condition, and show that
it is equivalent to PO resp. PO ex post.

(b) For single-dimensional valuations the impossibility result of |Dobzinski et al.
[2012] implies that there can be no deterministic mechanism for indivisible items that
is IR, PO, and IC for private budgets. We show that for heterogeneous items there can
also be no deterministic mechanism for indivisible items that is IR, PO, and IC for
public budgets. To this end we extend the “classic” result that IC mechanisms must
satisfy “value monotonicity” (VM) and “payment identity” (PI) from settings without
budgets to settings with public budgets. To establish the impossibility result, we then
use NT and PI to derive a lower bound on the payments that conflicts with the upper
bounds on the payments required by IR. Our impossibility result is tight in the sense
that if any of the conditions is relaxed such a mechanism exists: (i) For homogeneous,
indivisible items a deterministic mechanism is given by |Dobzinski et al.[[2012]. (ii) For
heterogeneous items we give a deterministic mechanism for divisible and a random-
ized mechanism for indivisible items as described above. We thus obtain a strong sep-
aration between deterministic mechanisms, that do not exist for public budgets, and
randomized mechanisms, that exist for private budgets. This separation is stronger
than in the homogeneous items setting, where a deterministic mechanism exists for
public budgets.

(c) For multi-dimensional valuations the impossibility result of |[Fiat et al.|[2011]]
implies that there can be no deterministic mechanism for indivisible items that is
IR, PO, and IC for public budgets. We show that there can also be no deterministic
mechanism with these properties for divisible items. To prove this we observe that—
just as in settings without budgets—every mechanism that satisfies IC with public
budgets must satisfy “weak monotonicity” (WMON). Then we show that in certain
settings this condition will be violated. For this we use that multi-dimensional valu-
ations enable the agents to manipulate in a sophisticated manner. While all previous
impossibility results in this area used agents that either only overstate or only under-
state their valuations, we use an agent that overstates his valuation for some item and
understates his valuation for another item. We use our impossibility result for deter-
ministic mechanisms to show that for both divisible and indivisible items there can be
no randomized mechanism that is IR ex interim, PO ex interim, and IC ex interim with
public budgets. This is the first impossibility result for randomized mechanisms in this
domain. It also establishes an interesting separation between multi-dimensional val-
uations, where no such mechanism exists, and single-dimensional valuations, where
such a mechanism exists.

1.2. Related Work

Homogeneous items were studied by [Dobzinski et al.| [2012], Bhattacharya et al.
[2010], and [Lavi and May| [2012]. Dobzinski et al. show that for both divisible and
indivisible items there is a deterministic mechanism that is IR, PO, and IC with public
budgets, and that no deterministic mechanisms can achieve this with private budgets.
Bhattacharya et al. show that there is a randomized mechanism for both divisible and
indivisible items that is IR ex interim, PO ex post, NPT ex post, and IC ex interim
with private budgets. Lavi and May prove an impossibility result for non-additive val-
uations with decreasing marginals. The impossibility result of Dobzinski et al. applies
to both of our settings, but our impossibility results are stronger as they are for public
budgets and, in the case of multi-dimensional valuations, also apply to randomized
mechanisms. The positive results of Dobzinski et al. and Bhattacharya et al. do not
apply to our settings as we study heterogeneous items, not homogeneous items. The
impossibility result of Lavi and May does not apply to our settings as the valuations
that we study are additive.
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Heterogeneous items were first studied by |Fiat et al. [2011]. In their model each
agent has the same valuation for each item in an agent-dependent interest set and
zero for all other items. They give a deterministic mechanism for indivisible items that
satisfies IR, NPT, PO, and IC when both interest sets and budgets are public. They also
show that when the interest sets are private, then there can be no deterministic mech-
anism that satisfies IR, PO, and IC. The positive result of Fiat et al. does not apply
to our settings as it is not always possible to express the valuations that we consider
in terms of per-agent valuations and interest sets. The impossibility result of Fiat et
al. applies to our multi-dimensional setting and shows that there can be no determin-
istic mechanism that satisfies IR, PO, and IC with public budgets for indivisible items.
Our impossibility result for this setting is stronger as it also applies to randomized
mechanisms and divisible items.

Settings with heterogeneous items were subsequently, and in parallel to this pa-
per, studied by (Colini-Baldeschi et al.|[2012] and |Goel et al.|[2012]. The former study
problems in which the agents are interested in a certain number of slots for each of
a set of keywords. The slots are associated with click-through rates that are assumed
to be identical across keywords. The latter study settings in which the agents have
identical valuations per item but the allocations must satisfy polyhedral or polyma-
troidal constraints. The settings studied in these papers are more general than the
single-dimensional valuations setting studied here. On the one hand this implies that
our impossibility result for this setting applies to their settings, showing that in their
settings there can be no deterministic mechanism for indivisible items that is IC with
public budgets. On the other hand this implies that their positive results apply to our
setting. This shows the existence of deterministic mechanisms for divisible items and
randomized mechanisms for both divisible and indivisible items that are IC with pub-
lic budgets in our setting. Our positive result for this setting is stronger as it shows
the existence of a mechanism that is IC with private budgets. Finally, the impossibility
results of Colini-Baldeschi et al. and Goel et al. either assume non-additive valuations
or that the allocations satisfy arbitrary polyhedral constraints and therefore do not
apply to the multi-dimensional valuations setting that we study here.

We summarize the results from this paper and the related work along with open
problems in Figure

2. PROBLEM STATEMENT

We are given a set N of n agents and a set M of m items. We distinguish between
settings with divisible items and settings with indivisible items. In both settings we
use X = [[", X, for the allocation space. For divisible items X; = [0, 1]™ for all agents
i € N and z;; € [0,1] denotes the fraction of item j € M that is allocated to agent
i € N. For indivisible items X; = {0, 1}™ for all agents i € N and z; ; € {0, 1} indicates
whether item j € M is allocated to agent i € N or not. In both cases we require that
>oiz1 iy < 1for all items j € M. We do not require that }°/" | z; ; < 1 for all agents
i € N, i.e., we do not assume that the agents have unit demand.

Each agent ¢ has a type 6; = (v;, b;) consisting of a valuation function v; : X; — R>¢
and a budget b; € R>(. We use © = [["_, O, for the type space. We consider two settings
with heterogeneous items, one with multi- and one with single-dimensional valuations.
In the first setting, each agent i € N has a valuation v; ; € R>( for each item j € M
and agent i’s valuation for allocation z; is v;(x;) = Z;"Zl x; jv; j. In the second setting,
each agent ¢ € N has a valuation v; € R>¢, each item j € M has a quality o; € R,
and agent i’s valuation for allocation x; € X, is v;(z;) = Z;.":l x; jo;v;. For simplicity
we will assume that in this setting a; > as > --- > a,,, and that vy > vy > --- > v, > 0.
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homogeneous heterogeneous & additive
interest set  multi-keyw. . . ..
budgets add. non-add. public/private unit demand single-dim. multi-dim.
det public  + [D] -[LCl] +I[FI/-[F] © © — [F]
* private —[D] — [D] —[D]/—-[D] -—I[D] — [D] —[D]
rand public  + [D] ? + [F1/? + [C,G] @ ©
" private + [Bh] ? ?/? ? @ ©
homogeneous heterogeneous & additive
polymatroid multi-keyw. . . ..
budgets add. non-add. constraints unit demand single-dim. multi-dim.
det. Public ~+ID,Bh]  —[GI +[G] +[C,G] ® S
* private —[D] — [D] — [D] —[D] —[D] —[D]
rand public  +[D,Bh] ? +[G] + [C,G] ® o
" private + [Bh] ? ? ? D o

Fig. 1. Summary of the results for indivisible items (upper table) and divisible items (lower
table). A plus (+ or @) indicates a positive result, and a minus (— or ©) indicates a negative
result. We use + and — for results from the related work with abbreviated references in brackets,
and @ and © for results from this paper. A question mark (?) indicates that nothing is known for
this setting. For the model with interest sets the table has two entries, one for public and one
for private interest sets.

A (direct) mechanism M = (z,p) consisting of an allocation rule z : ® — X and a
payment rule p : © — R” is used to compute an outcome (zx, p) consisting of an alloca-
tion z € X and payments p € R". A mechanism is deterministic if the computation of
(z,p) is deterministic, and it is randomized if the computation of (z, p) is randomized.
We allow the resulting allocation and payments to be arbitrarily correlated.

We assume that the agents are utility maximizers and as such need not report their
types truthfully. We consider settings in which both the valuations and budgets are
private and settings in which only the valuations are private and the budgets are pub-
lic. When the budgets are public then they are known to the auctioneer and all agents.
Private valuations/budgets mean that only the agent itself knows its valuation/budget,
but not the other agents or the auctioneer. In the private values and private budgets
setting a report by agent i € N with true type 0; = (v;,b;) can be any type 6, = (v}, b}).
In the private values but public budgets setting agent : € IV is restricted to reports of
the form 6 = (v}, ;). In both settings, if mechanism M = (z,p) is used to compute an
outcome for reported types ¢ = (61,...,0,) and the true types are § = (4;,...,6,,) then
the utility of agent i € N is

V(T4 o) — i&’ if 7;9/ gbi,and
w00, ) = { 20O 00D Ew T =

For deterministic mechanisms and their outcomes we are interested in the following
properties:

(a) Individual rationality (IR): A mechanism is IR if it always produces an IR out-
come. An outcome (z, p) for types 6 = (v, b) is IR if it is (i) agent rational: u;(x;,p;,6;) > 0
for all agents i € N and (ii) auctioneer rational: ;" | p; > 0.

(b) Pareto optimality (PO): A mechanism is PO if it always produces a PO outcome.
An outcome (z,p) for types 6 = (v,b) is PO if there is no other outcome (z’,p’) such
that w;(z},p},0;) > w;(x;,p;,0;) for all agents i € N and Y  p, > > | p;, with at

least one of the inequalities strictE] Note that we do not explicitly require that the

2Both IR and PO are defined with respect to the reported types, and are satisfied with respect to the true
types only if the mechanism also satisfies IC.
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0:6 P. Ditting et al.

alternate outcome is IR, but that only IR outcomes can dominate an IR outcome. That
means that if we consider a PO and IR outcome then the two definitions are actually
equivalent.

(c) No positive transfers (NPT): A mechanism satisfies NPT if it always produces an
NPT outcome. An outcome (z,p) satisfies NPT if p; > 0 for all agents i € N.

(d) Incentive compatibility (IC): A mechanism satisfies IC if for all agents i € N,
all true types 60, and all reported types ¢’ we have wu;(z;(0;,0",),pi(6:,0",),6;) >
w2 (0,0,),pi(01,07,), 00)-

For randomized mechanisms we are naturally interested in randomized outcomes,
which are distributions over deterministic ones. We then consider the expected utility
an agent gets and compare it to the expected utility that the agent could get with other
randomized outcomes. If a randomized outcome satisfies the above conditions in this
way, we say it satisfies them ex interim. Alternatively, if each deterministic outcome in
the support of a randomized outcome has this property, we say it satisfies the property
ex post. For outcomes that are IR ex interim and PO ex interim only outcomes that are
IR ex interim can be better. Hence our negative results for randomized mechanisms
also apply under this alternate definition.

3. SINGLE-DIMENSIONAL VALUATIONS

In this section we present exact characterizations of PO resp. PO ex post outcomes
and deterministic mechanisms that are IC with public budgets. We characterize PO
resp. PO ex post by a simpler “no trade” condition and extend the “classic” character-
ization results for deterministic mechanisms for single-dimensional valuations (see,
e.g., [Myerson|[1981}; |Archer and Tardos|2001]]) that are IC without budgets to settings
with public budgets. We then show our main positive result, i.e., the existence of ran-
domized mechanisms for divisible and indivisible items that are IR ex interim, PO ex
post, and IC ex interim for private budgets. We complement this positive result with
an impossibility result for deterministic mechanisms for indivisible items that applies
even when budgets are public.

3.1. Exact Characterizations of Pareto Optimality and Incentive Compatibility

We start by characterizing PO resp. PO ex post outcomes through a simpler “no trade”
condition. In the deterministic setting we consider an outcome (z, p) and compare it to
alternate allocations z’. In the randomized setting we consider a deterministic outcome
and compare it to possibly randomized allocations z’. In what follows we use ] ; to

denote the expected fraction of item j agent i gets. This allows us to treat the two
settings in a unified manner.

We say that an outcome (z,p) for single-dimensional valuations satisfies no trade
(NT) if () ) ;cyxi; = 1 for all j € M, and (b) there is no allocation 2’ such that for
6 = jem(@i;—wij)ayforallie NNW={ie N|¢ >0},and L ={i € N |J; <0} we
have ), div; > 0and .y, min(b; —p;, 6;v5) + >, d;v; > 0. The quantity 6;v; is how
much valuation agent i gains/loses when switching from allocation x to z’. The agents
in W are “winners”, while the agents in L are “losers”. Winners are willing to increase
their payment by at most min(b; — p;, d;v;), while losers would need to be paid J;v;. The
definition says that there should be no alternative assignment that strictly increases
the sum of the valuations and allows the winners to compensate the losers.

Here is an example: Consider a setting with two agents and a single indivisible
item. Suppose that the agents have valuations 10 and 5 and budgets 6 and 4. Then the
outcome (z, p) which gives the item to agent 2 at a price of 4 does not satisfy NT. This is
because the alternate allocation =’ which gives the item to agent 1 has 6;v; = 1-10 = 10
and Jyvp = —1-5 = —5 and thus ), 5 d;v; > 0. Moreover W = {1} and L = {2} and
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Y iew min(b; — pg, 0;v5) + >, cp 6;v; = min(6,10) — 5 > 0. Indeed we could re-assign the
item from agent 2 to agent 1, increase agent 1’s payment by 5, and decrease agent 2’s
payment by 5. In the resulting outcome agent 1 would have a strictly higher utility,
agent 2’s utility would be unchanged, and the sum of payments would increase by one.
Hence the original outcome was not PO.

PROPOSITION 3.1. An outcome (x,p) for single-dimensional valuations and either
divisible or indivisible items that respects the budget limits is PO resp. PO ex post if
and only if it satisfies NT.

Next we characterize deterministic mechanisms for indivisible items that are IC
with public budgets by “value monotonicity” and “payment identity”. A determinis-
tic mechanism M = (z,p) for single-dimensional valuations and indivisible items
that respects the publicly known budgets satisfies value monotonicity (VM) if for all
i € N, 0, = (v;,b;), 8, = (v,b;), and 6_; = (v_;,b_;) we have that v; < v} implies
D jen Tig(0i,0-i)a; <375 h @i j(0;,0-;)a;. A deterministic mechanism M = (z,p) for
single-dimensional valuations and indivisible items that respects the publicly known
budgets satisfies payment identity (PI) if for alli € N and 0 = (v,b) with ¢,, <v; < ¢,
we have p;(6) = pi((0,6:),0_3) + > _, (7 — Ys—1)¢y. (i, 0_;), where 79 < 41 < ... are the
values jen Tijoy can take and ¢, (b;,0_;) for 1 < s <t are the corresponding critical
valuations. While VM ensures that stating a higher valuation can only lead to a better
allocation, PI gives a formula for the payment in terms of the possible allocations and
the critical valuations.

PROPOSITION 3.2. A deterministic mechanism M = (x,p) for single-dimensional

valuations and indivisible items that respects the publicly known budgets is IC if and
only if it satisfies VM and PIL.

3.2. Randomized Mechanisms for Indivisible and Divisible Items

We obtain our positive result through a reduction to the setting with a single (and
thus homogeneous) item that allows us to apply the following proposition from [Bhat-
tacharya et al.[2010]. The basic building block of the mechanisms mentioned in this
proposition is the “adaptive clinching auction” for a single divisible item. It is described
for two agents in [Dobzinski et al.|2012] and as a “continuous time process” for arbi-
trarily many agents in [Bhattacharya et al.|2010].

PROPOSITION 3.3 ([BHATTACHARYA ET AL.|[2010]l). For a single divisible item
there exists a deterministic mechanism that satisfies IR, NPT, PO, and IC for public
budgets. Additionally, for a single divisible or indivisible item there exists a random-
ized mechanism that satisfies IR ex interim, NPT ex post, PO ex post, and IC ex interim
for private budgets.

For indivisible items we reduce the multi-item to the single-item setting by applying
the randomized mechanism for a single indivisible item of Bhattacharya et al.[[2010] to
a single indivisible item for which agent : € N has valuation v; = 5 e QUi We then
map the single-item outcome (%, ) into an outcome (x, p) for the multi-item setting by
setting x; ; = 1 for all j € M if and only if Z; = 1 and setting p; = p; for all ¢ € N.

A similar reduction works in the case of divisible items. The only difference is that
in this case we use the deterministic or randomized mechanisms of Bhattacharya et al.
[2010] for a single divisible item, and then map the single-item outcome (z,p) into a
multi-item outcome by setting z; ; = Z; for all i € N and all j € M and setting p; = p;
for alli € N.
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0:8 P. Ditting et al.

The main difficulty in proving that the resulting mechanisms have the claimed prop-
erties is to establish that they are PO/PO ex post. For this we argue that these partic-
ular ways of mapping the single-item outcome into a multi-item outcome preserves a
specific structural property of the single-item outcome which remains to be sufficient
for PO/PO ex post also in the multi-item setting.

PROPOSITION 3.4. For indivisible or divisible items, if (Z,p) denotes the random-
ized outcome for a single item of the randomized mechanism of |Bhattacharya et al.
[2010] and (Z, p) denotes the randomized outcome for the multi-item setting constructed
as described above, then E [u;(Z;, p;)] = E [u;(Z;, p;)] for all i € N. Similarly, for divisible
items, if (Z,p) denotes the deterministic outcome for a single item of the deterministic
mechanism of Bhattacharya et al. [2010] and (T, p) denotes the deterministic outcome
for the multi-item setting constructed as described above, then u;(Z;,p;) = u;(Z;, p;) for
all i € N.

THEOREM 3.5. For single-dimensional valuations, divisible or indivisible items,
and private budgets there is a randomized mechanism that satisfies IR ex interim, NPT
ex post, PO ex post, and IC ex interim. Additionally, for single-dimensional valuations
and divisible items there is a deterministic mechanism that satisfies IR, NPT, PO, and
IC for public budgets.

PROOF. IR resp. IR ex interim and IC resp. IC ex interim follow from Proposition[3.4]
and the fact that the corresponding mechanisms of Bhattacharya et al.|[2010]] are IR
resp. IR ex interim and IC resp. IC ex interim. NPT resp. NPT ex post follows from
the fact that the payments in our mechanisms and the mechanisms of Bhattacharya
et al.|[2010] are the same, and the mechanisms in [Bhattacharya et al.||2010]] satisfy
NPT resp. NPT ex post. For PO (ex post) we argue that the structural property of the
outcomes of the mechanisms in [Bhattacharya et al.|2010] that (a) >, #; ; = 1 for all
j € M and (b) ZjeM Z; ; > 0 and v, > 0; imply py = by (both ex post) is preserved by
the mapping to the multi-item setting and remains to be sufficient for PO (ex post).

We first show that the property is preserved. For this observe that ), . &; ; = 1 for
all j € M implies that >,y x;; = 1 for all j € M and that }_,_,,%;; > 0 and 0, > ¥
imply p;; = b; implies that ZjeM z;; > 0 and vy > v; imply pyr = byr.

Next we show that the property remains to be sufficient for PO (ex post). For
this assume by contradiction that the outcome (z,p) is not PO (ex post). Then, by
Proposition there exists a (possibly randomized) z’ such that ), _, d;v; > 0 and
ZiEW HllIl(b, — pi,5iv,-) + ZiEL o;v; > 0, where 0; = ZjEM(:CIi,j — IiJ)Oéj, W = {Z eN ‘
6i>0},andL:{i€N|6i§0}.

Because (7, p) satisfies condition (a), i.e., > ;. y z;; = 1 for all j € M, and 2’ is a valid
assignment, i.e., >, yz;; < 1forall j € M, wehave >, & = > D en(@i; —
z;j)o; < 0. Because ),y d;v; > 0 we have Y., d;v; > > ..y 0w > 0 and, so,
Y icw 0 > 0. We conclude that >, d; = >,y 0 — > ey 0i < 0and, so, >, d;v; <O.

Because (z, p) satisfies condition (b), i.e., > jem Tij >0 and v;; > v; imply p;y = by,
there exists a t with 1 < ¢ < n such that (1) Z]EM z;; >0andp; =b; for 1 <i <t (2)
ZjeM x;; > 0andp; <b;fori=t+1, and (3) Z]EM z;; =0andp; <b;fort+2<i<n.

We complete the proof by distinguishing three cases, and showing that in each of the
three cases we get a contradiction.

Case 1: t = n. Then ),y min(b; — p;, 6;v;) = 0 and, thus, >, min(b; — ps, d;v;) +
ZiGL d;v; < 0.

Case 2:t <nand W N {1, L. ,t} = (). Then EieW 0;v; < ZiEW 6ivt+1 and ZiEL 0;v; <
EiEL 61‘1}“_1 and, thus, ZiEN 0iv; = ZieW 0;v; + EiEL 0v; < ZieN (SﬂJH_l <0.
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Case 3:t <nand WN{1,...,t} # 0. Then Y, , min(p; — b;, d;v;) < ZiGW\{l..t} Sivian
and D, ., 0 <) ,cp dive1 and, thus, >,y min(p; — b, 6;v5) + 500 d5vi < (D, n 0i —
ZieWn{L...,t} di)vep1 < 0. O

3.3. Deterministic Mechanisms for Indivisible Items.

The proof of our impossibility result uses the characterizations of PO outcomes and
mechanisms that are IC with public budgets as follows: (a) PO is characterized by
NT and NT induces a lower bound on the agents’ payments for a specific assignment,
namely for the case that agent 1 only gets item m. (b) IC, in turn, is characterized by
VM and PI. Now VM and PI can be used to extend the lower bound on the payments
for the specific assignment to all possible assignments. (c) Finally, IR implies upper
bounds on the payments that, with a suitable choice of valuations, conflict with the
lower bounds on the payments induced by NT, VM, and PI.

THEOREM 3.6. For single-dimensional valuations, indivisible items, and public
budgets there can be no deterministic mechanism M = (z,p) that satisfies IR, PO,
and IC.

PROOF. For a contradiction suppose that there is a mechanism M = (z,p) that is
IR, PO, and IC for all n and all m. Consider a setting with n = 2 agents and m = 2
items in which v; > v > 0 and b; > aqvs.

Observe that if agent 1’s valuation was v; = 0 and he reported his valuation
truthfully, then since M satisfies IR his utility would be w;((0,b1),0-1,(0,b1)) =
—pl((O, bl), 9,1) > 0. This shows that pl((07 bl), 9,1) < 0.

By PO, which by Proposition is characterized by NT, agent 1 with valuation
v1 > vy and budget b; > ajv, must win at least one item because otherwise he could
buy any item from agent 2 and compensate him for his loss.

PO, respectively NT, also implies that agent 1’s payment for item 2 must be strictly
larger than b, — (@1 — ag)vy because otherwise he could trade item 2 against item 1 and
compensate agent 2 for his loss.

By IC, which by Proposition is characterized by VM and PI, agent 1’s payment
for item 2 is given by p1 ({2}) = p1((0,b1),0_1) + aaca, (b1,0_1), where c,, is the critical
valuation for winning item 2. Together with p; ({2}) > b1 — (a1 — a2)v, this shows that
Cay(b1,0-1) > (1/az2)[by — (a1 — az)ve — p1((0,b1),60-1)].

IC, respectively VM and PI, also imply that agent 1’s payment for any non-empty set
of items S in terms of the fractions v; = ZjeS aj > - >y = as >y = 0 and cor-
responding critical valuations c, (b1,0-1) > -+ > ¢4, (b1,0-1) = ca,(b1,0-1) is p1(S) =
pl((O, bl), 9,1) + 2221(% — 7571)675 (bl, 9,1). Because Cr, (bl, 071) > Caqy (bl, 9,1) for all s

and Zi:l(%_%‘—l) = Z]‘es a; we obtain p; (S) > p1((0,b1), 0—1)"’(2]'65 @j)Cay (b1,0-1).
Combining this lower bound on p; (S) with the lower bound on ¢,, (b1,0_1) shows that
p1(S) > (X es aj/a2)[br — (a1 — a2)va].
For v; such that (1/as)[b; — (aq — az)va] > v1 > vy we know that agent 1 must win
some item, but for any non-empty set of items S the lower bound on agent 1’s payment
for S contradicts IR. O

4. MULTI-DIMENSIONAL VALUATIONS

In this section we obtain a partial characterization of deterministic mechanisms that
are IC with public budgets by generalizing the “weak monotonicity” condition of
Bikhchandani et al.| [2006] from settings without budgets to settings with budgets.
We use this partial characterization together with a sophisticated misreport, in which
an agent understates his valuation for some item and overstates his valuation for an-
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other item, to prove that there can be no deterministic mechanism for divisible items
that is IR, PO, and IC with public budgets. Afterwards, we use this result to show that
there can be no randomized mechanism for either divisible or indivisible items that is
IR ex interim, PO ex interim, and IC ex interim for public budgets.

4.1. Partial Characterization of Incentive Compatibility

For settings without budgets every deterministic mechanism that is incentive compat-
ible must satisfy what is known as weak monotonicity (WMON), namely if 2 and z;
are the assignments of agent 7 for reports v, and v;, then the difference in the val-
uations for the two assignments must be at least as large under v, as under v;, i.e.,
vi(xi(0;,0-:)) — vi(xi(6s,0-3)) > vi(x;(0],0_;)) — vi(x;i(0;,0—;)). We show that this is also
true for deterministic mechanisms that respect the public budgets.

PROPOSITION 4.1. Ifa deterministic mechanism M = (z,p) for multi-dimensional

valuations and either divisible or indivisible items that respects the publicly known
budget limits is IC, then it satisfies WMON.

4.2. Deterministic Mechanisms for Divisible Items

We prove the impossibility result by analyzing a setting with two agents and two items.
This restriction is without loss of generality as the impossibility result for an arbitrary
number of agents n > 2 and an arbitrary number of items m > 2 follows by setting
v;; = 0if ¢ > 2 or j > 2. In our impossibility proof agent 2 is not budget restricted
(i.e., by > v2 1 + v22). Agents can misreport their valuations, and it is not sufficient to
study a single input to prove the impossibility. Hence, we study the outcome for three
related cases, namely Case 1 where v; 1 < v2; and vy 3 < vg2; Case 2 where vy 1 > vy 1,
V1,2 < V2,2, and by > V1,15 and Case 3 where V1,1 > V2,1, V1,2 > V2.2, and additionally,
by > V1,1, V1,1V2,2 > V12021, and Vg1 + V22 > by. We g“ive a partial characterization of
those cases, which allows us to analyze the rational behavior of the agents.

Case 1 is easy: Agent 2 is not budget restricted and has the highest valuations for
both items; so he will get both items. Thus in this case the utility for agent 1 is zero.

LEMMA 4.2 (CASE 1) Given b2 > V21 +’02,2, V21 > V1,1 and V2,2 > V1,2, then Z1,1 = 0,
212 =0, 221 =1, 222 = 1, and u; = 0 in every IR and PO outcome selected by an IC
mechanism.

In Case 2, agent 1 has the higher valuation for item 1, while agent 2 has the higher
valuation for item 2. Thus, agent 1 gets item 1 and agent 2 gets item 2. Since the only
difference to Case 1 is that in Case 2 v;; > v;; while in Case 1 v; ; < vy 1, the critical
value whether agent 2 gets item 1 or not is v 1, and thus in every IC mechanism,
agent 1 has to pay v2; and his utility is v; ;1 — va ;.

LEMMA 4.3 (CASE 2) Given by > Va1 + V22, V1,1 > V2.1, V22 > V12, and by > V1,1,
thenz11 =1, 212=0,221 =0, 222 =1, and uy =v;1—v21 in every IR and PO outcome
selected by an IC mechanism.

In Case 3, agent 1 has a higher valuation than agent 2 for both items, but he does
not have enough budget to pay for both fully. In Lemma we show that if agent 1
does not spend his whole budget (p; < b1) he must fully receive both items (specifically
x12 = 1), since if not, he would buy more of them. Additionally, even if he spent his
budget fully (i.e., p1 = b1) his utility u;, which equals x; 1v1,1 + 212012 — b1, must be
non-negative. Since b; > v; ; this implies that z; ; must be 1, i.e., he must receive item
1 fully, and z; » must be non-zero. Then, in Lemma [4.5, we show that actually z; » < 1,
which, combined with Lemma 4.4} implies that p; = b;. The fact that 21, < 1, i.e, that
agent 1 does not fully get item 1 and 2 is not surprising since he does not have enough
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budget to outbid agent 2 on both items as b; < vz 1 +v2 2. However, we are even able to
determine the exact value of 1 2, which is (b — v2,1)/v2,2.

LEMMA 4.4 (CASE 3, PART A). Given V1,1 > V2,1, V1,2 > V22, by > V1,1, and V1,1V2,2 >
V1,202,1, lfpl < b then r1,1 = 1 and T12 = 1, else lfpl =0 then r1,1 = 1 and T2 > 0, in
every IR and PO outcome.

LEMMA 4.5 (CASE 3, PART B). Given by > V2,1 + V22, V1,1 > V2.1, V1,2 > V22, by >
V1,1, V1,1V2,2 > VU1,2V2.1, and Vg1 + V22 > b1, then pP1 = by and T12 = (bl — ’02,1)/1}2,2 <1lin
every IR and PO outcome selected by an IC mechanism.

We combine these characterizations of Case 3 with (a) the WMON property shown
in Proposition[4.1]and (b) a sophisticated way of agent 2 to misreport: He overstates his
value for item 1 by a value o and understates his value for item 2 by a value 0 < 8 <
a, but by such small values that Case 3 continues to hold. Thus, by Lemma Z2.1
remains 0 (whether agent 2 misreports or does not), and thus, the WMON condition
implies that x5 does not increase. However, by the dependence of x; » on vy ; and v o
shown in Lemma 4.5 z; 5, and thus also x5 > changes when agent 2 misreports. This
gives a contradiction to the assumption that such a mechanism exists.

THEOREM 4.6. There is no deterministic IC mechanism for divisible items which
selects for any given input with public budgets an IR and PO outcome.

PROOF. Let us assume by contradiction that such a mechanism exists and consider
an input for which by > vy 1 +v22, v1,1 > V2,1, V12 > V22, b1 > Vi1, V11V22 > V12021,
and vy 1 4+ v2 2 > by holds. Such an input exists, for example v; ;1 =4, v1 2 =5, v21 = 3,
and vy = 4 with budgets b = 5 and b, = 8 would be such an input. Lemma

and 1mply that T11 = 1, T21 = O, T1,2 = %, Ta2 = 1-— x1,2, and p1 = bl.
Let us consider an alternative valuation by agent 2. We define vy, = vg1 + a and
vy 9 = v — f3 for arbitrary a, 8 > 0 and a > 8 which are sufficiently small such that
V1,1V 9 > V1205 ; holds, and we denote the fraction of item 2 assigned to agent 2 for the
alternated valuations by T3 5. By Proposition IC implies WMON, and therefore,
.%‘/2)2’()/272 — l‘272’l}é,2 > Z‘/272U2’2 — X2,202.2. It follows that x2,2 > $/272, and by Lemma

!
b1—v21 < b1 —vy 4

Hence, the budget of agent 1 has to be large enough, such that b; >

v2,2 — vé,2 :
v ‘7)/ — Vg /U/ 1 p .
2'21]2’;71;’1 22 _ v2af+tvasa > V21 + V22, but by < V2,1 + V22 holds by assumption.
. 2,2

Contradiction! O

4.3. Randomized Mechanisms for Divisible and Indivisible Items

We exploit the fact that randomized mechanisms for both divisible and indivisible
items are essentially equivalent to deterministic mechanisms for divisible items.

~We show that for agents with budget constraints every randomized mechanism
M = (z,p) for divisible or indivisible items can be mapped bidirectionally to a de-
terministic mechanism M = (x,p) for divisible items with identical expected utility
for all the agents and the auctioneer when the same reported types are used as input.
To turn a randomized mechanism for divisible or indivisible items into a deterministic
mechanism for divisible items simply compute the expected values of p; and z; ; for all
7 and j and return them. To turn a deterministic mechanism for divisible items into a
randomized mechanism for divisible or indivisible items simply assign the items with
probability z; ; and keep the same payment as the deterministic mechanism.

PROPOSITION 4.7. Every randomized mechanism M = (Z,p) for agents with finite
budgets, a rational auctioneer, and a limited amount of divisible or indivisible items can
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be mapped bidirectionally to a deterministic mechanism M = (z,p) for divisible items
such that u;(x;(0"), pi(0'),0;) = Efus(2:(0"),ps(0'),0:)] and >,y pi(0') = E[D,cn Di(0')]
for all agents i, all true types 6 = (v,b), and reported types ¢ = (v', V).

PROOF. Let us map M = (z,p) to M = (x,p) that assigns for each agent i € N
and item j € M a fraction of E [Z; ;] of item j to agent i, and makes each agent i € N
pay E [p;]. The expectations exist since the feasible fractions of items and the feasible
payments have an upper bound and a lower bound. For the other direction, we map
M = (z,p) to M = (z,p) that randomly picks for each item j € M an agent i € N to
which it assigns item j in a way such that agent i is picked with probability z; ;, and
makes each agent i € N pay p;. Since x = E[z] and p = E[p], 3>,/ (zijvi5) —pi =

E e (@ijvij) —pilforalli e Nand 3o,y pi =E[X,cypi]. O

This proposition implies the non-existence of randomized mechanisms stated in The-
orem

THEOREM 4.8. There can be no randomized mechanism for divisible or indivisible
items that is IR ex interim, PO ex interim, and IC ex interim, and that satisfies the
public budget constraint ex post.

PROOF. For a contradiction suppose that there is such a randomized mechanism.
Then, by Proposition there must be a deterministic mechanism for divisible items
and public budgets that satisfies IR, PO, and IC. This gives a contradiction to Theo-
remi4.6l O

5. CONCLUSION AND FUTURE WORK

In this paper we analyzed IR, PO, and IC mechanisms for settings with heterogeneous
items. Our main accomplishments are: (a) Randomized mechanisms that achieve these
properties for private budgets and a restricted class of additive valuations. (b) An im-
possibility result for randomized mechanisms and public budgets for additive valua-
tions. We are able to circumvent the impossibility result in the restricted setting be-
cause our argument for the impossibility result is based on the ability of an agent to
overstate his valuation for one and understate his valuation for another item, which
is not possible in the restricted setting. A promising direction for future work is to
identify other valuations for which this is the case.

APPENDIXES
A. PROOF OF PROPOSITION[3.7]
We show the claim for the deterministic setting. The claim for the randomized setting
follows by interpreting =] ; as the the expected fraction of item j allocated to agent i,
p; as agent ’s expected payment, and v} as its expected utility.

First we show that if (z,p) satisfies PO, then it satisfies NT. To this end we show
that if (z, p) does not satisfy NT, then it is not PO.

Case 1: = NT because — (a). We can assign the unassigned fraction of the item j € M
for which ), x;; < 1toany agenti € N to get a contradiction to PO.

Case 2: ~ NT because — (b). There exists an assignment =’ such that },_, d;v; > 0
and }, y min(b; — p;, 6v;) + >, cp 0iv; > 0. Consider the outcome (z',p") for which
P = p; +min(b; — p;, d;v;) for all agents i € W and p, = p; + 0;v; for all agents i € L.
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For all agents i € N we have v} > u; because

Ué = Z i 5005 -+ 5ivi — Dpi — Inin(bi 7])2,511)1) > U; fori e W, and (1)
jEM

u, = Z T 500 + 030 — Py — 05U = forie L.
JjEM

For the auctioneer we have ), p} > >,y pi because

D= pi=> 0+ Y pi— Y pi= Y (pi+min(b; —p;,div;))
iEN iEN iew el iEN iew
+ Z(pi +6;v;) — Zpi = Z min(b; — pi, d;v;) + Z div; > 0. (2)

i€l i€EN icW icL

If 3, cop min(b; — pi, 05v;) + >, divs > 0, then inequality is strict showing that
YienPi > Y;cnpi- Otherwise, >, min(b; — p;, 6;v;) + > ,cp d0iv; = 0, and since
> ien 0ivi > 0 we must have b; — p; < 0;v; for at least one agent i € W. For this
agent i inequality is strict showing that «, > u,. Hence in both cases (x,p) is not
PO

Next we show that if (x,p) satisfies NT, then it is PO. To this end we show that if
(z,p) is not PO, then it does not satisfy NT. If (z,p) is not PO, then there exists an
outcome (z',p’) such that u; > u; for all agentsi € N and ),y p; > >_,cn pi, With at
least one of the inequalities strict.

If not all items are assigned completely in (x,p), then we have — (a) and so (z, p)
does not satisfy NT. Otherwise, if in (z,p) all items are assigned completely, then to
show that (x,p) does not satisfy NT we have to show — (b). To this end consider the
assignment z’ and let §; = ZieM(x’i’j —z;;)a; fori e N,let W ={ie N|J§ >0}, and
let L={ie N|d <0}

We begin by showing that ), _,, min(b; — p;, d;v;) + >, dvi > 0. For i € N we have
pi — pi < min(b; — p;, ;v;) because p; < b; implies p, — p; < b; — p;, and u; > u; implies
p; — pi < 0. It follows that Y-,y min(b; — pi, vi) + D ,cp divi > e (05 — pi) +
Doicr P —pi) =D ienPi — Dien Pi = 0.

Next we show that ) .\ d;v; > 0. Since u > u; for all i € N we have ),y u; >
>_ien wi- This implies ZieN((Zjer[ Ig,jaj”i) —p;) = ZieN((Zje]M T;jajv;) — pi), and
consequently, EiGN(ZjGM(m;ﬁ,j —Tig)oUi) 2 D e N D Dien Pic AS D e N Dy = D ien Pi

it follows that
Z@wZZp;*ZPiZO- 3
iEN iEN iEN
If u} > u; for some i € N, then Y,y u; > >, \ u; and, thus, the first inequality in
is strict. Otherwise, if ),y p; > D _,c v Pi, then the second inequality in (3) is strict. In
both cases strictness of the inequality implies that ), d;v; > 0.

B. PROOF OF PROPOSITION[3.2]
We begin by showing that if M satisfies VM and PI, then it satisfies IC. For a con-
tradiction assume that M satisfies VM and PI, but that it does not satisfy IC. Then
there exists i € N, 0; = (v;,b;), 0, = (v}, b;), and 0_; = (v_;,b_;) with v; # v, such that
wi(xi(0F,0_:),p(0;,0_:),0:) > ui(x:(6;,0_;),p(0;,0_4),0;).

Let c,, (bi,0—;) < vi < ¢y, (bi,0-;) and let ¢, (b;,0-;) < v <cy,, (b3, 0-i).
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If v; > v} then since M satisfies VM and PI the utilities v, and v that agent i gets
from reports 6; and 0, satisfy u; — v, = (y+ — v )v; — Zizt,ﬂ(% — Ys—1)Cy, (bis 0—;) >

('Yt - %’)'Ui - Eizturl('Ys - 78—1)%’ =0.
If v; < v} then since M satisfies VM and PI the utilities u; and u; that agent i gets

from reports 0, and 6; satisfy v, — u; = (v — v)v; — Zilztﬂ(% — Ys—1)Cy, (bi, 0—;) <

(ver — ve)vi — Ei:tﬂ(’)’s —Ys—1)v; = 0.

We conclude that in both cases agent i is weakly better off when he reports truthfully.
This contradicts our assumption that M does not satisfy IC.

Next we show that if M satisfies IC, then it satisfies VM. By contra-
diction assume that M satisfies IC, but that it does not satisfy VM. Then
there exists ¢ € N, 0, = (vi,b;), 0, = (v,,b;), and 6_; = (v_;,b_;) with
v; < wv; such that > . ) 2 ;(0;,0-:)a; > deM x;;(0;,0_;)a;. Since M satis-
fies IC agent ¢ with type 0, does not benefit from reporting 6, and vice versa.
Thus, > ;¢ i (0i,0-i)ovi — pi(0i,0-3) > > x”(e 0_;)ojv; — pi(0;,0_;), and
Z]eM x;,5(0;,0_))a;v) — pi(6],0_;) > 276M x;,5(6;,0-;)a;v; — pi(60;,0_;). By combining
these inequalities we get (3,5, @i, (0, 0—i)c; =3 xw(é‘ 0_;)oj)(v;—v]) > 0. Since
djent Tij(0i,0-3)ay > 305 n i (0;, 9_L)ozj this shows that v; > v} and gives a contra-
diction to our assumption that v; < v;.

We conclude the proof by showing that if M satisfies IC, then it satisfies PI. For a
contradiction assume that M satisfies IC, but that it does not satisfy PI. Then there
exists i € N, 0; = (v,b;), and 0_; = (v_4,b_;) with ¢,, < vj < Copria such that

pi(0],0_3) # pi((0,b:),0—;) + S (7 — vs—1)cy. (bi, 0—;), where the v, are the sum over
the o’s of all possible assignments in non-increasing order and the c., (b;,6_;) are the
smallest valuations (or critical valuations) that make agent i win ~,.

Consider the smallest v; such that this is the case. For this v; we must have
v; = ¢y, (bi,0_5) > cy(bs,0_;) = 0. We must have v; = c,,,(b;,0_;) because by VM
agent i’s assignment for all reports 0; = (v}, b;) with v}’ such that c,,, (b;,0_;) < v/ <
Cypriy (b;,0—;) is the same and, thus, by IC he must face the same payment. We must
have c,,, (b;,0_;) > c4,(bi,0_;) = 0 because for v; = 0 we have p(6;,0_;) = p((0,b;),0_;)
by definition.

Case 1: pZ(GQ, 9,1) > pl(((), b2)7 9,2) + Zizl(’ys — ’ys,l)cfys (bl, 071) Consider 92 = (Ui, bl)
with v; < @] such that c,, (b;,0_;) < v; < ¢y, (b;,0_;). Since v; < v; we have
pi(0;,0_;) = pi((0,b;),0_;) + Zi:ll('ys — Ys—1)Cy, (b;,0_;). If agent ¢’s type is 6, then
for the utilities u; and w; that he gets for reports 0, and 6; we have u, — u; <
(ver = e —1)v; — (Y — Yer—1)¢y,, (bi, 0—;) = 0. This shows that agent i with type ¢; has an
incentive to misreport his type as 6; and contradicts our assumption that M satisfies

IC. ,

Case 2: p;(60},0_;) < pi((0,b:),0-5)+Y a—y (Ys—7s-1)cy, (bi, 0_i). Let e = p;((0,b;),0_;)+
S (Vs = Ys—1)¢y, (bi, 0_) — pi(0},6_;) and consider 6; = (v;, b;) with v; < v} such that
Cyy, (b, 0_;) < vy < ¢y, (b, 0_;). Since v; < v; we have p;(6;,0_;) = pl((O b;),0_;) +
S vt (73 Yo—1)Cv, (b, 0—;). If agent i s type is 6; then for the utilities u; and u, that he

gets from reports 0! and 6; we have u, —u; = (v —yr—1)v; — (Y — Yer— 1)c%, (bi,0_;) +
Since this is true for all v; with ¢, | (bz, 0_i) < v < ¢y, (bi,0—;) we can choose v; such

that (v — v —1)(vi — ¢y, (bs,0_;)) > —e. We get uj —u; > 0. This shows that agent i with
type 6; has an incentive to misreport his type as 6, and contradicts our assumption
that M satisfies IC.
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C. PROOF OF PROPOSITION[3.4]
First suppose that the payments are deterministic. If p; > b, then p;, > b
and Ui(Ii,pi7 (Ul', bz)) = U (i’“ﬁ“ (f)z, b,)) = —0oQ. Otherwise, Ujg (Ii,pi, (’Ui, b7))
>y (@i jogvi) = p = &0 — pi = wi( %4, Piy (0, b))

Next suppose that the payments are randomized. If Pr[p; > b;] > 0 then Pr[p; > b
0Oand E [Ul((E“p“ (’UZ‘, bl))] =E [Ul(.’i“ﬁ“ ('[NJZ7 bz))] = —OQ. Otherwise, E [ui(xi,pz-, ('Ufh b )
E[DT (i jogui) — pi] = B[&:0; — pi] = E [wi(Z4, pi, (03, bi))]-

}
}

v

)

K3

D. PROOF OF PROPOSITION

Fixi € N and 0_;, = (v_;,b_;). By IC agent i does not benefit from reporting ¢; =
(v}, b;) when his true type is 6; = (v;, b;), nor does he benefit from reporting 6; = (v;, b;)
when his true type is 9; = (’U,Z,bl) Thus, UZ(I’(QHG_Z)) — p1(0779_7) > UZ(I(QQ,H_Z)) —
pi(05,0_;), and vi(x(0;,0_;)) — p:(0;,0_;) > vi(x(0;,60—_;)) — pi(0;,6_;). By combining these
inequalities we get U;(l‘z(%, 9_1‘)) — v{(xl(Ql, 0_1')) > Ul(l‘z(ei, 9_1)) - vi(a:i(ﬁi, (9_1‘)).

E. PROOF OF LEMMA 4.2

We divide the proof into the following parts: in (a) we show that z1; = 0, ;2 = 0,
z9.1 =1, and x4 » = 1, and in (b) we show that u; = 0.

To (a): Let us assume by contradiction that we have an IR and PO outcome where
z1,1 > 0or z12 > 0. IR requires that p; < x5 1v21 + 22,202 2. Hence, agent 2 can buy the
fractions z; ; of item 1 and z; » of item 2 for a payment p with z1 1v2,1 + 12v22 > p >
21101,1 + 21,2012 from agent 1. Because of vo; > v; 1 and vg 2 > v 2 such a payment
exists and agent 2 has enough money, since by > v 1 + v2 2 implies by > vo 1 + V22 =
(Il,l + 1’271)1)271 + (ILQ + 1‘272)1}272 > p2 +p. The utlhty of agent 2 would increase and the
utilities of agent 1 and the auctioneer would not decrease. Contradiction to PO!

To (b): We have already shown before that agent 1 gets no fraction of the items, and
therefore, IR implies that his payments cannot be positive.

Let us consider the subcase where v, ; = v1 2 = 0 and agent 1 reports truthfully. The
valuations of agent 2 are positive. Because of IR the payment of agent 2 cannot exceed
his reported valuation, but (a) holds when his reported valuations are positive. There-
fore, agent 2 would have an incentive to understate his valuation when his payment
would be positive. Hence, IR of the auctioneer implies that the payment of both agents
is equal to 0. This means, that the utility of agent 1 is 0 in this case.

If there was any other reported valuation of agent 1, where he gets no items, but
where his payments are negative, then he would have an incentive to lie, when his
valuations are equal to 0. This would contradict IC!

F. PROOF OF LEMMA .3

We divide the proof into the following parts: in (a) we show that z;; = 1, 212 = 0,
291 =0, and 222 = 1, and in (b) we show that u; = vy 1 —va 1.

To (a): Let us assume by contradiction that x; o > 0. Then, agent 2 can buy these
fractions of item 2 for a payment p with x; ov22 > p > x1 9v1 2, Which exists because
of va2 > v19. IR and by > vy 1 + v 2 ensure that agent 2 has enough budget, since
by > vo 1+ V22 = (1,1 +2,1)v21 + (T1,2+ X2,2)V22 > P2+ T1,1V2,1 + T1,20V22 > p2 + p. The
utility of the agent 2 would increase, while the utilities of agent 1 and the auctioneer
would not decrease. Contradiction to PO!

Otherwise, let us assume that z;; < 1 and z; 2 = 0. Then, agent 1 can buy the
other fractions of item 1 for a payment p with s 1v11 > p > z91v2,1, Which exists
because of v1; > vy 1. IR and b; > vy ensure that agent 1 has enough budget, since
by >v11 = (11 +221)v1,1 > p1+x2,1v1,1 > p1+p. The utility of agent 1 would increase,
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while the utilities of agent 2 and the auctioneer would not decrease. Contradiction to
PO!

To (b): We show first that p; < vy ;. Since z;; = 1 and z; 2 = 0, IR requires that
p1 < wvy,1. Ifp1 > vs 1, then agent 1 has an incentive to lie. If he states that his valuation
for item 1is v} ; with p; > v} ; > vy 1, then the allocation of the items does not change,
but he pays less because of IR. Contradiction to IC!

Now, we show that p; > v2 1. Let us therefore assume by contradiction that p; < vq ;.
If we have vl 1 with p; < vl 1 < vg1 instead of v1 1, and all the other valuations are
left unchanged then Lemma 1mphes that «j = 0. Hence, in this case agent 1 can
increase his utility when he hes and states that his valuation is v1,1, because his utility
would be v] ; — p1 > 0. Contradiction to IC!

Since agent 1 gets all fractions of item 1, no fraction of item 2, and has to pay vz 1,
his utlhty is V1,1 — V2,1.

G. PROOF OF LEMMA [4.4]

We divide the proof into the following parts: in (a) we show that z;; = land ;5 =1
if p1 < by, in (b) we show that x1 5 > (1 — xl,l)% if p1 = b1, and in (c) we show that
Tr11 = 1 and T1,2 > 0 ifpl = by.

To (a): Let us assume by contradiction that p; < b; and z; ; < 1 for anitem j € {1,2}.
Agent 1 can increase his utility by buying min{ bl;pl , &2 ; } fractions of item j for a unit
price p with v, ; > p > vy ; from agent 2. Such a price exists, because of v 1 > vz
and v1,2 > v2 2. Agent 1 has enough money for the trade, since p; + pmin{ bl;pl T} =
min{by, p1+pzs;} < b1. The utility of agent 1 would increase, and the utilities of agent 2

and the auctioneer would not decrease. Contradiction to PO! ,
To (b): IR requires by = p; < v1121,1 + v1,221,2, and therefore, z; 5 > 71_5?2“1 If

z1,1 = 1, then by > vy ; implies that (1 — 24, 1)” L=0< blvl”: L Zi :”“ L. Otherwise,
b
lfQCLl =0, then by > V1,1 and V1,1V2,2 > V12021 1mply that (1 — 1 1)222 = Zz’; < 1)112 =

bl*ﬁ% and hence, (1 — 2, 1)52—; < blzl& for all 21 ; € [0, 1]. Therefore, we have

that (1 — 24 1)— < 11,2 for all possible values of z; ;.

To (c): We spht the proof into two parts. We assume by contradiction that either
P11 = b1, T1,1 <1 and T12 = 0, or that P11 = by, T1,1 < 1 and T12 > 0.

Let us assume that p; = b1, 11 < 1 and 22 = 0. According to b; > v, 1, the utility
of agent 1 is negative. Contradiction to IR!

We will now investigate the other case and assume that p; = b1, 211 < landz; 2 > 0.

Agent 2 has the same valuation for z, » = 1 — z; ; fractions of item 1 and (1 — 2, 1)22—;

221 fractions of item 2 is

V2,2

identical to the valuation for (1—z; 1)22222 fractions of item 1. We know that vy 1v; 2 <

vV2,2V1,1
v22v1,1. That is, that the utility of agent 1 is increased and the utilities of agent 2 and
the auctioneer are not decreased, when agent 1 trades (1 — xm)zz—’; fractions of item 2

fractions of item 2. The valuation of agent 1 for (1 — z; 1)

against zo; = 1— 11 fractions of item 1. Fact (b) implies that agent 1 actually has the
required (1 — 1, 1) L > fractions of item 2. Contradiction to PO!

H. PROOF OF LEMMA [4.5]
We divide the proof into the following parts: in (a) we show that p; = b; and 12 < 1,
in (b) we ShOW that by — U; L > 1,2 > by 1’[)2 1 and in (C) we ShOW that Ti9= b1 —v2.1 .

V2,2
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To (a): Lemmaimplies that the utility of agent 1is vq ;41 2v1,2—p1. We know that
v2,1+v2 2 > b1. Hence, we can select a sufficiently small e > 0 such that vy 1 +vs 2—e > b;.
Because of v; 1 > vz 1 and by > vy 1, we know that vy 2 — € > 0. Let us consider the case
where we have v , with vy 2 > v}, > v2 2 — ¢ instead of v; » and all other valuation are
left unchanged. In this case, the utility of agent 1 is v; 1 — v2,1, because of Lemma
and since vz » > v} , holds. Therefore, IC implies that

V11— V2,1 > V11 + T120) 9 — D1 4)

Let us assume by contradiction that x> = 1, then inequality (4) implies p; > vy 1 +

V]9 > V21 +v22 — € > by, which contradicts the budget constramt Therefore, z1 5 < 1,
and hence Lemma .4|implies that p; = b;.

To (b): Lemma and (a) show that the utility of agent 1 is vy 1 + 1 2v12 — b1. We

select a sufficiently small ¢ > 0, such that vy; + v22 — € > b; and consider the case

where v} 5 = v2 2 — € and all other valuations are unchanged. Lemma implies that
the utility of agent 1 is v ;1 — vo 1 in this case. Hence, IC implies that

!
V1,1 — V21 > V11 + 21,201 9 — b, and 5)

V1,1 + T1,201,2 — b1 > v1,1 — V2,1. (6)

Inequality implies that 2—vzt — bi-v21 > x1,2. Since this inequality has to hold

V2 2—€ ’Ul 2

for all sufficiently small ¢ > 0, we know that % > z1,2. Inequality (@ implies that
blv_lv;’l < Tl 2

To (c): Let us assume by contradiction that the inequality =221 > 2, 2 implied by
(b) is strict, and v > 0 is defined such that blmf L= mx12+ 7. We select arbitrary
¢ > 0 and & with vy (”—7 - 1) > § > 0 which fulfill v; 5 — ¢ — § = vy5. Such

b1 —v2,1—Yv2,2
variables ¢ and ¢ exist because of vi 2 > wvs9, and since vi; > v21, b1 > w11 and
. by — . .
v > 0 imply that ﬁ > 1. We consider the alternative case where v}, =
v12 — ¢ and all other valuations are unchanged. We use 7/ , for the fraction of item 2

assigned to agent 1 in this case. By (b) it follows that bl;& < ' 5, and hence, bl vj 5 <
1,2

1} 5. Furthermore, Lemma and (a) imply that p1 =bh and r;; = 11in both cases.
Now IC requires that v; ; + ZT12V12 — by > v11 + ) 2V1,2 — by, Tespectively x5 > x} 2

b b
and therefore, 1T”“ vo> A ”“

Voo V21 1)), Contradictlon!
s b1 —va2,1—yv2,2

. But this inequality can be transformed to § >
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