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A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically

distributed random variables: given a sequence of random variables X1, . . . ,Xn drawn independently from a

distribution F , the goal is to choose a stopping time τ so as to maximize α such that for all distributions F
we have E[Xτ ] ≥ α · E[maxt Xt ]. What makes this problem challenging is that the decision whether τ = t
may only depend on the values of the random variables X1, . . . ,Xt and on the distribution F . For a long time

the best known bound for the problem had been α ≥ 1 − 1/e ≈ 0.632, but quite recently a tight bound of

α ≈ 0.745 was obtained. The case where F is unknown, such that the decision whether τ = t may depend

only on the values of the random variables X1, . . . ,Xt , is equally well motivated but has received much less

attention. A straightforward guarantee for this case of α ≥ 1/e ≈ 0.368 can be derived from the solution to

the secretary problem, where an arbitrary set of values arrive in random order and the goal is to maximize the

probability of selecting the largest value. We show that this bound is in fact tight. We then investigate the case

where the stopping time may additionally depend on a limited number of samples from F , and show that even

with o(n) samples α ≤ 1/e . On the other hand, n samples allow for a significant improvement, while O(n2)
samples are equivalent to knowledge of the distribution: specifically, with n samples α ≥ 1 − 1/e ≈ 0.632 and

α ≤ ln(2) ≈ 0.693, and with O(n2) samples α ≥ 0.745 − ϵ for any ϵ > 0.

CCS Concepts: • Theory of computation→ Online algorithms; Computational pricing and auctions;
• Applied computing → Economics.
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1 INTRODUCTION
The theory of optimal stopping is concerned with what a computer scientist would call online

algorithms, and the basic problem is one of sequential decision making with imperfect information

about the future so as to maximize some reward or minimize some cost. Two canonical problems in

the field are the secretary problem and the prophet problem. Both problems have over the past few

years also received considerable attention from the theoretical computer science and algorithms

community, particularly since they are closely related to the design of posted-price mechanisms in

online sales.
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In the secretary problem we are given n distinct, non-negative numbers from an unknown range.

These numbers are presented in random order, and the goal is to stop at one of these numbers

in order to maximize the probability with which we select the maximum. The problem has a

surprisingly simple, and surprisingly positive, answer: by discarding a 1/e fraction of the numbers,

and then selecting the first number that is greater than any of the discarded numbers, one is

guaranteed to select the maximum with probability 1/e [e.g., 17]. The guarantee of 1/e provided by
this simple stopping rule is best possible, and remains best possible for example when numbers

come from a uniform distribution with unknown and randomly chosen endpoints and are therefore

correlated random variables [5, 16]. When numbers are drawn independently from a single known

distribution a better (and tight) guarantee of around 0.58 can be obtained [17].

In the prophet problem we are again shown n non-negative numbers, one at a time, but now these

numbers are independent draws from known distributions and our goal is to maximize the expected

value of the number on which we stop relative to the expected maximum value in hindsight. The

two main results here concern the case where the distributions are distinct and the case where

they are identical. For the former a tight bound of 1/2 was given by Krengel and Sucheston [24, 25]

and Samuel-Cahn [29]. For the latter a lower bound of 1 − 1/e ≈ 0.632 due to Hill and Kertz [21]

was improved only very recently, first to 0.738 by Abolhassani et al. [1] and then to 0.745 by Correa
et al. [8]. The bound of Correa et al. is in fact known to be tight due to a matching upper bound of

Hill and Kertz [21] and Kertz [22].

An interesting variant of the prophet problem, for both identical and non-identical distributions,

can be obtained by assuming that the distributions from which values are drawn are unknown.

Despite being very natural (e.g., [3]), precious little is known about this variant.

Our Contribution. We consider the prophet problem in which values are drawn independently

from a single unknown distribution, and ask which approximation guarantees can be obtained

relative to the expected maximum value in hindsight. This problem is interesting specifically for

identical distributions, as here one could hope to learn something about later values from earlier

ones. It seems challenging because, unlike in the case where the distribution is known and an

optimal stopping rule can be obtained via backward induction, it is unclear what an optimal solution

would look like.

A 1/e-approximation for our problem can be obtained in a relatively straightforward way by

applying the secretary algorithm (Proposition 3.1 in Section 3). The algorithm is guaranteed to

stop on the maximum value with probability at least 1/e , and one can show that this implies a

1/e-approximation relative to the expected maximum in hindsight. This analysis, however, seems

crude and in particular does not take into account that we are rewarded also when we do not stop

on the maximum value. Indeed, one would expect that the prophet objective is easier to achieve

than the objective of the secretary problem.

We show that the straightforward guarantee of 1/e is in fact best possible in the prophet setting

(Theorem 3.2 in Section 3). The main difficulty in showing an impossibility result of this kind is that

the set of possible stopping rules to which it applies is very rich. We will see, however, that for every

stopping rule there exists a setV ⊆ N of arbitrary size and with an arbitrary gap between the largest

and second-largest element on which the stopping rule is what we call value-oblivious: for random

variables X1, . . . ,Xn with support V , the decision to stop at Xi when Xi > max{X1, . . . ,Xi−1}

does not depend on the values of the random variables X1, . . . ,Xi but only on whether Xi is the

largest among these values. We will then construct a distribution F with support V such that n
values drawn independently from F are pairwise distinct with probability one and the expectation

of their maximum is dominated by the largest value in V . The objective of the prophet problem
on F is thus identical, up to a small error, to that of the secretary problem, and any stopping rule
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o(n) ϵ n n Ω(n) Θ(n2)

1/e
Thm. 3.2

Hill and Kertz [21, 22]

Prop. 3.1

ln(2) Thm. 4.6

1 − 1/e
Thm. 4.1

Cor. 4.5

0.745
Thm. 5.1

Fig. 1. Overview of results. The number of samples is displayed along the horizontal axis, the performance
guarantee along the vertical axis. Lower bounds, shown as a solid line and two dots, result from stopping rules
with a certain performance guarantee. Upper bounds, shown as dashed lines, correspond to impossibility
results that no stopping rule can improve upon. The results for o(n) and Θ(n2) samples are tight. With the
exception of the upper bound of approximately 0.745, all results are new to this paper.

with a guarantee better than 1/e for the former would yield such a stopping rule for the latter. To

understand why stopping rules must be value-oblivious it is useful to consider the special case

where n = 2. In this case we may focus on stopping rules that always stop atX2 whenever they have

not stopped at X1, and every such stopping rule can be described by a function p : R→ [0, 1] such
that p(x) is the probability of stopping at X1 when X1 = x . By the Bolzano-Weierstrass theorem the

infinite sequence (p(n))n∈N contains a monotone subsequence and thus, for some q ∈ [0, 1] and
every ϵ > 0, a subsequence of values contained in the interval [q − ϵ,q + ϵ]. For random variables

that only take values in the index set of that letter subsequence, the stopping rule will therefore

stop at the first random variable with what is essentially a fixed probability. When n > 2 the set of

possible stopping rules becomes much richer, and identifying a setV on which a particular stopping

rule is value-oblivious becomes much more challenging. Rather than the Bolzano-Weierstrass

theorem, our proof uses the infinite version of Ramsey’s theorem [26] to establish the existence of

such a set.

Motivated by this impossibility result we then turn to the casewhere the stopping rule additionally

has access to a limited number of samples from the distribution, which it may use in determining

the stopping time. An extension of our upper bound construction shows that o(n) samples are

not enough to improve on the bound of 1/e , the interesting case therefore is the one with Ω(n)
samples. We show that a simple but subtle stopping rule achieves an approximation factor of

1 − 1/e ≈ 0.632 with n − 1 samples (Theorem 4.1 in Section 4). We start by drawing n − 1 samples

and using the maximum of these samples as a threshold for the first random variable. If the first

random variable exceeds the threshold, we stop here. Otherwise we add the newly sampled value

to the set of samples and then remove a random element from the resulting set. We then use the

maximum of the new set as a threshold for the second random variable, and so on. While the

procedure is easy to describe, its analysis is somewhat delicate. The key step is to show that the

sets of random variables used to set the thresholds all behave like a set of n − 1 fresh samples. Thus

the expected value collected from each random variable conditioned on accepting it equals the
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expected maximum value of n independent draws from the distribution, and the probability of

accepting a random variable conditioned on reaching it is exactly 1/n. The approximation factor is

then equal to the overall probability of stopping, which is at least 1 − 1/e . By a straightforward

extension (Corollary 4.5), we obtain a lower bound of
1+α
2
· (1 − 1/e) for α < 1 .

We complement the lower bound of 1 − 1/e with matching upper bounds for two different

classes of algorithms that share specific properties of our algorithm. These bounds limit the types

of approaches that could conceivably be used to go beyond a performance guarantee of 1 − 1/e .
We also provide a parametric upper bound for algorithms with access to γ n samples for γ ≥ 0

(Theorem 4.6 in Section 4). For algorithms that use at most n samples this upper bound is equal to

ln(2) ≈ 0.693 and thus nearly tight.

Finally, we show how to get arbitrarily close to the optimal bound of 0.745 with O(n2) samples

(Theorem 5.1 in Section 5). The basic idea here is to mimic the optimal algorithm for known distri-

butions, which uses a decreasing sequence of thresholds as determined by conditional acceptance

probabilities, which are increasing over time. Our algorithm mirrors this approach using the corre-

sponding quantiles of the empirical distribution function. It additionally skips a constant fraction

of values at the beginning, and in our analysis we use the inequality of Dvoretzky, Kiefer, and

Wolfowitz [12] to show simultaneous concentration of all empirical quantiles. These two steps allow

us to reduce the number of required samples from O(n4) to O(n2), relative to the obvious approach

which uses all random variables and uses Chernoff and union bounds to show concentration. We

provide evidence that any algorithm that achieves the optimal bound with o(n2) samples would

have to use very different techniques.

In summary our results reveal a phase transition from secretary-like behavior to prophet-like

behavior when going fromo(n) samples toΩ(n) samples, and show thatO(n2) samples are equivalent

to full knowledge of the distribution.

Further Related Work. For early work on the classic single-choice prophet inequality in mathe-

matics we refer the reader to a survey of Hill and Kertz [20]. Starting from work of Hajiaghayi et al.

[19] prophet inequalities, and in particular extensions to richer feasibility domains, have seen a

surge of interest in theoretical computer science (e.g., [2, 6, 7, 10, 11, 13–15, 23, 27, 28]).

In theoretical computer science there is a relatively thin but important body of prior work on

the case of unknown distributions. Most relevant for us is the aforementioned paper by Azar

et al. [3], which focuses on richer feasibility structures such as matching constraints and matroids,

and work by Babaioff et al. [4], who consider a setting similar to ours but focus on a different

objective, revenue maximization, apply different techniques, and obtain results that are qualitatively

different from ours. In concurrent work Wang [30] considers the case of unknown, non-identical

distributions and shows how to obtain a factor 2 approximation with n samples.

Related learning problems have also been studied in operations research andmanagement science,

but the types of problems, objectives, and techniques differ significantly from ours and typically

involve regret minimization (see, e.g., the results of Goldenshluger and Zeevi [18] and the recent

survey of den Boer [9]).

2 PRELIMINARIES
Denote by N the set of positive integers and let N0 := N ∪ {0}. For i ∈ N, let [i] = {1, . . . , i} and
denote by Si the set of permutations of [i].
Let k ∈ N0 and n ∈ N. We consider (k,n)-stopping rules that sequentially observe random

variablesX1, . . . ,Xn and have access to samples S1, . . . , Sk , and for each i = 1, . . . ,n decide whether

to stop on Xi based on the values of X1, . . . ,Xi and S1, . . . , Sk . We assume that X1, . . . ,Xn and

S1, . . . , Sk are independent and identically distributed, and respectively denote by f and F the
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probability density function and cumulative distribution function of their distribution. Formally, a

(k,n)-stopping rule r is a family of functions r1, . . . , rn where ri : R
k+i
+ → [0, 1] for all i = 1, . . . ,n.

Here, ri (s1 . . . , sk , x1, . . . , xi ) for s ∈ Rk+ and x ∈ Rn+ is the probability of stopping at Xi conditioned

on having received S1 = s1 . . . , S = sk as samples andX1 = x1, . . . ,Xi = xi as values and not having
stopped on any of X1, . . . ,Xi−1. The stopping time τ of a (k,n)-stopping rule r, given S1, . . . , Sk and

X1, . . . ,Xn , is thus the random variable with support {1, . . . ,n} ∪ {∞} such that

Pr [τ = i | S1 = s1, . . . , Sk = sk ,X1 = x1, . . . ,Xn = xn] =

(
i−1∏
j=1

(1 − r j (s1, . . . , sk , x1, . . . , x j ))

)
· ri (s1 . . . , sk , x1, . . . , xi )

for all s ∈ Rk+ and x ∈ Rn+.
For a given stopping rule we will be interested in the expected value E [Xτ ] of the variable

at which it stops, where we use the convention that X∞ = 0, and will measure its performance

relative to the expected maximum E [max{X1, . . . ,Xn}] of the random variables X1, . . . ,Xn . We

will say that a stopping rule achieves approximation guarantee α , for α ≤ 1, if for any distribution,

E [Xτ ] ≥ α E [max{X1, . . . ,Xn}].

For ease of exposition we will assume continuity of F in proving lower bounds and use discrete

distributions to prove upper bounds. All results can be shown to hold in general by standard

arguments, to break ties among random variables and to approximate a discrete distribution by a

continuous one.

3 SUBLINEAR NUMBER OF SAMPLES
In this section we show that for o(n) samples, the prophet problem with an unknown distribution

behaves like the secretary problem. As we will see in Section 3.1, a straightforward baseline can

be obtained from the optimal solution to the secretary problem, which discards a 1/e fraction of

the values and then accepts the first value that exceeds the maximum of the discarded values. The

algorithm does not require any samples, is guaranteed to stop at the maximum of the sequence

with probability 1/e , and can be shown to also provide a 1/e approximation for our objective. This

analysis seems crude and in particular does not account for the fact that the prophet inequality is

rewarded even when it does not stop on the maximum value of the sequence. Indeed the objective

of the prophet problem seems easier to achieve than that of the secretary problem, and one would

expect to be able to improve on the bound of 1/e . Our main result in this section, which we prove

in Section 3.2, shows that this is not the case: the bound of 1/e is in fact best possible. This results

continues to hold with o(n) samples.

3.1 A 1/e-Approximation Without Samples
The following result translates the guarantee of 1/e for the secretary problem to a prophet inequality

for independent random variables from an unknown distribution.

Theorem 3.1. Let X1,X2, . . . ,Xn be i.i.d. random variables drawn from an unknown distribution
F . Then there exists a (0,n)-stopping rule with stopping time τ such that

E [Xτ ] ≥
1

e
· E [max{X1,X2, . . . ,Xn}] .

The result can be shown in a straightforward way, based on the idea that the realizations of the

random variables X1, . . . ,Xn can be obtained by drawing n values from their common distribution

and then permuting them uniformly at random. The classic analysis of the secretary problem [16]

implies that for each realization of the n draws, the optimal stopping rule for this problem obtains
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the maximum value with probability 1/e . It thus also obtains at least a 1/e fraction of the expected

value of this maximum. We formalize this idea and prove Theorem 3.1 in the full version of this

paper.

3.2 A Matching Upper Bound
We proceed to show our main result: perhaps surprisingly, it is impossible to improve on the

straightforward lower bound of 1/e .

Theorem 3.2. Let δ > 0. Then there exists n0 ∈ N such that for any n ≥ n0 and any (0,n)-stopping
rule with associated stopping time τ there exists a distribution F , not known to the stopping rule, such
that when X1, . . . ,Xn are i.i.d. random variables drawn from F ,

E[Xτ ] ≤

(
1

e
+ δ

)
· E[max{X1, . . . ,Xn}].

The main difficulty in showing an impossibility result of this kind is that it applies to the set of all

possible (0,n)-stopping rules, which a priori is very rich. Indeed, recall that a (0,n)-stopping rule r
is any family of functions r1, . . . , rn where ri : R

i
+ → [0, 1] for all i = 1, . . . ,n. Our main structural

insight will be that we can restrict attention to stopping rules r for which we can find arbitrarily

large sets V ⊆ N, such that for random variables X1, . . . ,Xn with support V , under the condition
that X1, . . . ,Xi are pairwise distinct and Xi > max{X1, . . . ,Xi−1}, and up to an arbitrarily small

error ε , the probability of r to stop on Xi does not depend on the values of any of the random

variables X1, . . . ,Xi . This is made precise by the following definition.

Definition 3.3. Let ε > 0 and V ⊆ N. A stopping rule r is called ε-value-oblivious on V if,

for all i ∈ [n], there exists a qi ∈ [0, 1] such that, for all pairwise distinct v1, . . . ,vi ∈ V with

vi > max{v1, . . . ,vi−1}, it holds that ri (v1, . . . ,vi ) ∈ [qi − ε,qi + ε).

While value-obliviousness significantly restricts the expressiveness of a stopping rule, this

restriction turns out to be essentially without loss when it comes to the ability of the class of all

stopping rules to achieve a certain guarantee across all possible distributions: for any stopping

rule and any ϵ > 0, there exists a stopping rule with the same guarantee that is ε-value-oblivious
for some infinite set V ⊆ N. This is made precise by the following lemma, which we prove in

Section 3.3.

Lemma 3.4 (Main structural lemma). Let ϵ > 0. If there exists a stopping rule with guarantee
α , then there exists a stopping rule r with guarantee α and an infinite set V ⊆ N such that r is
ε-value-oblivious on V .

With Lemma 3.4 at hand it is not difficult to prove Theorem 3.2. For any stopping rule and

an appropriate value of ϵ , we identify a stopping rule r with the same performance guarantee

that is ϵ-value oblivious on an infinite set V ⊆ N. We then define a distribution F with finite

support S ⊆ V such that (i) there is a large gap between the largest and second-largest elements

of S , (ii) n independent draws from F are pairwise distinct with probability close to 1, (iii) r is
ε-value-oblivious on S , and (iv) the performance guarantee of r on the distribution is dominated

by the probability of selecting the largest element of S . By (i) and (ii) the prophet problem for the

unknown distribution F is then equivalent up to a small error to a secretary problem, and by (iii)

and (iv) r behaves on F essentially like a stopping rule for the secretary problem. A performance

guarantee for r of more than 1/e would thus contradict the optimality of this bound for the secretary

problem.

Proof of Theorem 3.2. Consider a (0,n)-stopping rule with performance guarantee1/e + δ . Set
ε = 1/n2. By Lemma 3.4 there exists a stopping rule r with performance guarantee 1/e + δ and
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an infinite set V ⊆ N on which r is ε-value-oblivious. Denote by τ the stopping time of r. Let
v1, . . . ,vn3,u ∈ V be pairwise distinct such that u ≥ n3 max{v1, . . . ,vn3 }. For each i ∈ [n], let

Xi =


v1 w.p.

1

n3
· (1 − 1

n2
)

...

vn3 w.p.
1

n3
· (1 − 1

n2
)

u w.p.
1

n2

.

We proceed to bound E[max{X1, . . . ,Xn}] from below and E[Xτ ] from above. For i ∈ [n], let X(i)
denote the ith order statistic of X1, . . . ,Xn , such that X(n) = max{X1, . . . ,Xn}. Then

E[max{X1, . . . ,Xn}] ≥ Pr[X(n) = u] · u =
1 − o(1)

n
· u .

On the other hand, using that X(n) = u with probability at most 1/n, we have that

E[Xτ ] = Pr[X(n) = u ∧ X(n−1) , u] · E[Xτ | X(n) = u ∧ X(n−1) , u]

+ Pr[X(n) = u ∧ X(n−1) = u] · E[Xτ | X(n) = u ∧ X(n−1) = u]

+ Pr[X(n) , u] · E[Xτ | X(n) , u]

≤
1

n
·

(
Pr[Xτ = X(n) | X(n) = u ∧ X(n−1) , u] · u

+ Pr[Xτ , X(n) | X(n) = u ∧ X(n−1) , u] ·O(n
−3) · u

)
+O(n−2) · u + 1 ·O(n−3) · u

≤
1 + o(1)

n
· Pr[Xτ = X(n) | X(n) = u ∧ X(n−1) , u] · u

≤
1 + o(1)

n
· Pr[Xτ = X(n) | X(n) = u ∧ X1, . . . ,Xn are distinct] · u .

To complete the proof we argue that

Pr[Xτ = X(n) | X(n) = u ∧ X1, . . . ,Xn are distinct] ≤ 1/e + o(1).

To see this assume for contradiction that Pr[Xτ = X(n) | X(n) = u ∧ X1, . . . ,Xn are distinct] ≥

1/e + δ for some δ > 0. Since r is ε-value oblivious onV , for each i ∈ [n] and distinct s1, . . . , si ∈ V
with si > max{s1, . . . , si−1}, there is a probability qi such that ri (s1, . . . , si ) ∈ [qi − ε,qi + ε). We

can thus define a new (0,n)-stopping rule r̂ with associated stopping time τ̂ such that for all

s1, . . . , si ∈ V , r̂i (s1, . . . , si ) = qi if si > max{s1, . . . , si−1} and r̂i (s1, . . . , si ) = 0 otherwise. Note

that r̂ bases its decision to stop only on the relative ranks of the values seen so far.

For the sake of the analysis, we think of r and r̂ as being coupled in the following way. Let

c1, . . . , cn be n i.i.d. draws from the uniform distribution on [0, 1]. For any i ∈ [n] and s1, . . . , si ∈ V ,

conditioned on τ ≥ i , we have τ = i if and only if ri (s1, . . . , si ) > ci , and, conditioned on τ̂ ≥ i , we
have τ̂ = i if and only if si > max{s1, . . . , si−1} and r̂i (s1, . . . , si ) = qi > ci .

Now consider any fixed sequence s1, . . . , sn ∈ V of distinct realizations ofX1, . . . ,Xn , respectively.

For any i ∈ [n], define ξi to be the event that occurs if and only if si > max{s1, . . . , si−1} and
ci ∈ [min{ri (s1, . . . , si ), r̂i (s1, . . . , si )},max{ri (s1, . . . , si ), r̂i (s1, . . . , si )}]. Note that then Pr[ξi ] ≤ ε .
Further note that Xτ = X(n) and Xτ̂ , X(n) implies that ξi occurs for some i ∈ [n]. Hence, by the

union bound,

Pr[Xτ̂ = X(n) | X1 = s1, . . . ,Xn = sn] ≥ Pr[Xτ = X(n) | X1 = s1, . . . ,Xn = sn] − nε . (1)
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Since this is true pointwise for all distinct s1, . . . , sn ∈ V ,

Pr[Xτ̂ = X(n) | X(n) = u ∧ X1, . . . ,Xn are distinct]

≥ Pr[Xτ = X(n) | X(n) = u ∧ X1, . . . ,Xn are distinct] − nϵ

≥ 1/e + δ ′

for some δ ′ > 0, where we have used (1) for the first inequality and ε = 1/n2 for the second one.

However, under the condition that X(n) = u and X1, . . . ,Xn are pairwise distinct, the relative ranks

of X1, . . . ,Xn are distributed uniformly at random. Thus r̂, which only relies on relative ranks,

selects the maximum with probability 1/e + δ ′, in contradiction to the well-known upper bound

of 1/e for the secretary problem [16, Section 2]. □

3.3 Proof of the Main Structural Lemma
We prove Lemma 3.4 through a sequence of steps that successively restrict the expressiveness of

the stopping rules we have to consider. First we show a restriction to what we call order-oblivious

rules, which in the decision to stop at random variable Xi , and conditioned on having reached Xi ,

may take into account the values of random variables X1, . . . ,Xi−1 but not the order in which they

were observed.

Definition 3.5. A stopping rule r is order-oblivious if for all j ∈ [n], all pairwise distinctv1, . . . ,vj ∈
R+ and all permutations π ∈ Sj−1, ri (v1, . . . ,vj ) = ri (vπ (1), . . . ,vπ (j−1),vj ).

The following result is very intuitive, but some care is required to prove it formally. We provide

a proof in the full version of this paper.

Lemma 3.6. If there exists a stopping rule with guarantee α , then there exists a stopping rule with
guarantee α that is order-oblivious.

To further restrict the class of stopping rules from order-oblivious to value-oblivious ones we

will now construct, for every order-oblivious rule r and any ε > 0, an infinite set V ⊆ N on which

r is ε-value-oblivious. The set V will depend on r and will be obtained by starting from N and

identifying smaller and smaller subsets on which the behavior of r is more and more limited. By

induction on i ∈ [n] we will identify a set on which value-obliviousness holds with respect to the

ith random variable. We need the following definition.

Definition 3.7. Consider a stopping rule r. Let ε > 0, i ∈ [n], and V ⊆ N. Then r is (ε, i)-value-
oblivious on V if there exists q ∈ [0, 1] such that, for all pairwise distinct v1, . . . ,vi ∈ V with

vi > max{v1, . . . ,vi−1}, it holds that ri (v1, . . . ,vi ) ∈ [q − ε,q + ε).

Note that (ε, i)-value-obliviousness for all i ∈ [n] is equivalent to ε-value-obliviousness. In
establishing (ε, i)-value-obliviousness for a particular value of i we will appeal to the infinite

version of Ramsey’s theorem to show the existence of an appropriate set V .

Lemma 3.8 (Ramsey [26]). Let c,d ∈ N, and let H be an infinite complete d-uniform hypergraph
whose hyperedges are colored with c colors. Then there exists an infinite complete d-uniform sub-
hypergraph of H that is monochromatic.

Proof of Lemma 3.4. Consider a stopping rule r with guarantee α . By Lemma 3.6, it is without

loss of generality to assume that r is order-oblivious. We fix ε > 0 for the entire proof and show

by induction on j ∈ [n] that there exists an infinite set S j ⊆ N such that, for all i ∈ [j], r is
(ε, i)-value-oblivious on S j . This suffices to show the claim, as for j = n it implies that the stopping

rule r is (ϵ, j)-value oblivious on Sn for all j ∈ N, and hence ϵ-value-oblivious on Sn .
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As S0 = N satisfies the induction hypothesis for j = 0, we proceed to show it for j = k > 0

assuming that it is true for j < k . First observe that we only need to find an infinite set Sk ⊆ Sk−1

such that r is (ε,k)-value-oblivious on Sk , because it follows from the induction hypothesis that Sk ,
as a subset of Sk−1, is (ε, i)-value-oblivious on S i for all i ∈ [k − 1].

Toward the application of Lemma 3.8, we construct a complete k-uniform hypergraphH with ver-

tex set Sk−1. Consider any set {v1, . . . ,vk } ⊆ Sk−1 of cardinalityk such thatvk > max{v1, . . . ,vk−1}.
Note that there exists a unique u ∈ {1, 2, . . . , ⌈1/(2ε)⌉} such that rk (v1, . . . ,vk ) ∈ [(2u − 1) · ε −
ε, (2u − 1) · ε + ε). Color the hyperedge {v1, . . . ,vk } of H with color u.

By Lemma 3.8 with c = ⌈1/2ε⌉ and d = k , there exists an infinite set of vertices that in-

duces a complete monochromatic sub-hypergraph of H . We define Sk to be such a set inducing

a monochromatic sub-hypergraph of H with color u. Now set q := (2u − 1) · ε and consider dis-

tinct v1, . . . ,vk ∈ Sk with vk > max{v1, . . . ,vk−1}. Since the edge {v1, . . . ,vk } in H has color

u, rk (vπ (1), . . . ,vπ (k−1)),vk ) ∈ [q − ε,q + ε) for some permutation π ∈ Sk−1. But since r is order-
oblivious, also rk (v1, . . . ,vk−1,vk ) ∈ [q−ε,q+ε). So r is (ε,k)-value oblivious on Sk . This completes

the induction step and the proof. □

3.4 Extension of the Upper Bound to o(n) Samples
We conclude this section by showing that even with o(n) samples the guarantee of 1/e is still best
possible.

Corollary 3.9. Let δ > 0 and f : N→ N with f (n) = o(n). Then there exists n0 ∈ N such that for
any n ≥ n0 and any (f (n),n)-stopping rule with associated stopping time τ there exists a distribution
F , not known to the stopping rule, such that when X1, . . . ,Xn are i.i.d. random variables drawn from
F ,

E[Xτ ] ≤

(
1

e
+ δ

)
· E[max{X1, . . . ,Xn}].

We give some intuition for why this is true: Assume there exists a (o(n),n)-stopping rule r with
guarantee bounded away from 1/e . Then we could obtain a (0,n)-stopping rule r′ by interpreting

(for suitable n′) the first o(n′) values as samples, the following n′ values as actual values on which

the rule may stop, and then running r in this setting. As we can choose n′ = (1 − o(1)) · n, the
expected maximum of n and n′ draws (from any distribution) are identical up to a (1 − o(1)) factor,
so the guarantee of r carries over to r′, contradicting Theorem 3.2. We give a short formal proof

based on Theorem 4.6 in the full version of this paper.

4 LINEAR NUMBER OF SAMPLES
The previous section has revealed a strong impossibility: even with o(n) samples it is impossible to

improve over the straightforward lower bound of 1/e ≈ 0.368 achieved by the well-known optimal

stopping rule for the secretary problem. We proceed to show that there is a sharp phase transition

when going from o(n) samples to Ω(n) samples, by giving an algorithm that uses as few as n − 1
samples and improves the lower bound from 1/e to 1 − 1/e ≈ 0.632. We also show that the bound

of 1 − 1/e is in fact tight for two different classes of algorithms that share certain features of our

algorithm. This illustrates that our analysis is tight and limits the types of approaches that could

conceivably be used to go beyond 1 − 1/e . We also show a parametric upper bound for algorithms

that use γ n samples for any γ ≥ 0. For algorithms that use at most n samples this bound is equal to

ln(2) ≈ 0.693 and thus nearly tight.
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4.1 Warm-Up: A 1/2-Approximation with n − 1 Samples
To gain some intuition let us first consider the natural approach to sample n − 1 values S1, . . . , Sn−1
from F and to use the maximum of these samples as a uniform threshold for all of the random

variablesX1, . . . ,Xn , accepting the first random variable that exceeds the threshold. It is not difficult

to see that the expected value we collect from any random variable Xt conditioned on stopping at

that random variable is at least E [max{X1, . . . ,Xn}], since under this conditionXt is the maximum

of at least n i.i.d. random variables. We can thus understand the approximation guarantee provided

by this approach by understanding the probability that it stops on some random variable. It turns

out that this probability, and hence the approximation guarantee, is 1/2+1/(4n−2). A more detailed

analysis, which we provide in the full version of this paper, also reveals that an improvement over

the bound of roughly 1/2 is impossible with a uniform threshold, even if this threshold is chosen

with knowledge of the distribution F .

4.2 A (1 − 1/e)-Approximation with n − 1 Samples
We proceed to show that it is indeed possible to obtain an improved bound of 1 − (1 − 1/n)n ≥
1 − 1/e ≈ 0.632 with just n − 1 samples. Our algorithm improves over the naïve approach that

obtains a factor 1/2 by increasing the probability that we stop at all, while maintaining the property

that the expected value that we collect when we do stop is at least E [max{X1, . . . ,Xn}].

Theorem 4.1. Let X1,X2, . . . ,Xn be i.i.d. random variables from an unknown distribution F . Then
there exists an (n − 1,n)-stopping-rule with stopping time τ such that

E [Xτ ] =

(
1 −

(
1 −

1

n

)n)
· E [max{X1, . . . ,Xn}] .

First note that a guarantee of 1 − 1/e − ε withOε (n) samples follows from a result of Ehsani et al.

[13] by observing thatOε (n) samples provide a sufficiently good approximation to the 1/e-quantile
of the distribution ofmax{X1, . . . ,Xn}. Here we take a different route that yields the bound exactly
and that, more importantly, can be developed further to work with only n − 1 samples.

Suppose we were given access to n(n − 1) ∈ Θ(n2) samples. Then we could partition the n(n − 1)
samples into n sets of size n − 1 each, and use the maximum of the ith set as a threshold for the ith
random variable. Upon acceptance of any random variable, that random variable would have a value

equal to the expected maximum of n i.i.d. random variables, which is equal to E [max{X1, . . . ,Xn}].

Conditioned on reaching the ith random variable it would be accepted with probability 1/n, for an
overall probability of acceptance of

∑n
i=1(1 − 1/n)

i−1 · 1/n = 1 − (1 − 1/n)n .
Algorithm 1 mimics this approach, but instead of using n − 1 fresh samples for each of the n

random variables it constructs n − 1 fresh-looking samples for each of the n random variables from

a single set {S1, . . . , Sn−1} of n − 1 samples. For the first random variable X1 the algorithm uses a

threshold equal to the maximum of the n − 1 samples. If X1 ≥ max{S1, . . . , Sn−1}, the algorithm
stops. Otherwise it adds X1 to the set of samples, picks one of the elements in {S1, . . . , Sn−1,X1}

uniformly at random, and drops this element from the set. The algorithm then continues in the

same way, by using the maximum of the set thus obtained as a threshold for the next random

variable, and updating the set when a random variable fails to exceed its threshold.
1

To analyze the algorithm it will be useful to consider a sequence j1, ..., jn−1 of random variables

drawn independently and uniformly from [n]. Then, for i = 1, . . . ,n, define variables Ri
1
, . . . ,Rin

1
An alternative approach for obtaining n − 1 fresh-looking samples for each time step i from a single set of n − 1

samples {S1, . . . , Sn−1 } is to select a uniformly random subset of size n − 1 from all n + i − 2 random draws

{S1, . . . , Sn−1, X1, . . . , Xi−1 } seen so far.
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Algorithm 1: Fresh looking samples

Data: Sequence of i.i.d. random variables X1, . . . ,Xn sampled from an unknown distribution

F , sample access to F
Result: Stopping time τ
τ ←− n + 1

S1, . . . , Sn−1 ←− n − 1 independent samples from F

S ←− {S1, . . . , Sn−1}

for t = 1, . . . ,n do
if Xt ≥ max{S} then

τ ←− t

Break

else
S ←− S ∪ {Xt }

Z ←− value from S , chosen uniformly at random

S ←− S \ {Z }

return τ

recursively as follows

R1

ℓ =

{
Sℓ for ℓ = 1, . . . ,n − 1

X1 for ℓ = n
and Riℓ =


Ri−1
ℓ

for ℓ = 1, . . . , ji−1 − 1

Ri−1
ℓ+1

for ℓ = ji−1, . . . ,n − 1

Xi for ℓ = n

for t > 1.

Then the random variable Xi = Rin and the threshold that we set for this random variable is

max{Ri
1
, . . . ,Rin−1}. Denote by ξi the event that random variable Xi exceeds the threshold that we

set for it, that is Rin = max{Ri
1
, . . . ,Rin}. An important observation is that ξi is independent from

ξ1, . . . , ξi−1.

Lemma 4.2. For every i ∈ [n], Pr
[
ξi ∩

(⋂
j<i ¬ξ j

) ]
= Pr [ξi ] ·

∏
j<i Pr

[
¬ξ j

]
.

Proof. It suffices to show that for all t = 1, . . . , i − 1, the event ξi ∩ (
⋂i−1

j=t+1 ¬ξ j ) is independent
of the event ¬ξt , i.e.,

Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

) ����� ¬ξt
]
= Pr

[
ξi ∩

i−1⋂
j=t+1

¬ξ j

]
.

We claim that

Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

)]
=

n∑
ℓ=1

Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

) ����� Rtℓ = max{Rt
1
, . . . ,Rtn}

]
· Pr

[
Rtℓ = max{Rt

1
, . . . ,Rtn}

]

=
n − 1

n
Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

) ����� Rtn < max{Rt
1
, . . . ,Rtn}

]
+
1

n
Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

) ����� Rtn = max{Rt
1
, . . . ,Rtn}

]
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= Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

) ����� Rtn < max{Rt
1
, . . . ,Rtn}

]
= Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ξ j

) ����� ¬ξt
]
.

Indeed, the first equality can be obtained by distinguishing the index where the maximum is attained.

For the second equality observe that the first probability on its left-hand side is the same for all

values of ℓ because the events are independent of the choice of ℓ and conditioning is symmetric,

and that the maximum is attained with probability 1/n at each index. For the third equality, notice

that it suffices to show that

Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ ξ j

) ����� Rtn < max{Rt
1
, . . . ,Rtn}

]
= Pr

[
ξi ∩

( i−1⋂
j=t+1

¬ ξ j

) ����� Rtn = max{Rt
1
, . . . ,Rtn}

]
.

So in both cases we evaluate the conditional probability of ξi ∩ (
⋂i−1

j=t+1), i.e., that Xt+1 to Xi−1 fail

to pass the random thresholds that we set for them and that Xi passes the random threshold that

we set for it. First notice that Rt
1
, . . . ,Rtn are i.i.d. random variables. The reason is the following: By

construction, {Rt
1
, . . . ,Rtn} is a random subset of {S1, . . . , Sn−1,X1, . . . ,Xt }, where the choice does

not depend on the values of S1, . . . , Sn−1,X1, . . . ,Xt . Hence, since S1, . . . , Sn−1,X1, . . . ,Xt are i.i.d.,

so are Rt
1
, . . . ,Rtn . Furthermore note that, for any t ′ > t , all of Rt

1
, . . . ,Rtn are among Rt

′

1
, . . . ,Rt

′

n with

equal probability (as they always remain among the considered variables with equal probability).

Hence, for the thresholds we set for Xt+1, . . . ,Xi , the roles of R
t
1
, . . . ,Rtn are indistinguishable, and

therefore, for the events at hand, the conditions whether any of Rt
1
, . . . ,Rtn is the maximum among

them are indistinguishable as well. This establishes the equality and thus the claim. □

Proof of Theorem 4.1. The value E [Xτ ] obtained by Algorithm 1 can be written by summing

over all possible stopping times i = 1, . . . ,n the product of the probability of stopping at Xi = Rin
and the expectation of Xi upon stopping, i.e.,

E [Xτ ] =

n∑
i=1

Pr [ξi ∧ ¬ξi−1 ∧ · · · ∧ ¬ξ1] · E
[
Rin | ξi ∧ ¬ξi−1 ∧ · · · ∧ ¬ξ1

]
.

By Lemma 4.2, and since for each i ∈ [n], the set {Ri
1
, . . . ,Rin} is a set of n i.i.d. random variables,

Pr [ξi ∧ ¬ξi−1 ∧ · · · ∧ ¬ξ1] =

(
1 −

1

n

) i−1
1

n
.

Since Rin is independent of ξ1, . . . , ξi−1, and using again that {Ri
1
, . . . ,Rin} is a set of n i.i.d. random

variables,

E
[
Rin | ξi ∧ ¬ξi−1 ∧ · · · ∧ ¬ξ1

]
= E

[
Rin | ξi

]
= E [max{X1, . . . ,Xn}] .

Thus

E [Xτ ] =
∑
i

(
1 −

1

n

) i−1
1

n
· E [max{X1, . . . ,Xn}] =

(
1 −

(
1 −

1

n

)n)
· E [max{X1, . . . ,Xn}] ,

as claimed. □

4.3 Going Beyond 1 − 1/e
We proceed to show an upper bound of 1 − 1/e for two different classes of algorithms that share

certain features of our algorithm. This shows that our analysis of Algorithm 1 is tight and limits

the class of algorithms that could conceivably go beyond 1 − 1/e .
The first upper bound applies to algorithms for which the probability of stopping at the ith

random variable conditioned on reaching it is independent of i . This is true for Algorithm 1 since, by
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Lemma 4.2, Pr

[
ξi |

(⋂
j<i ¬ξ j

) ]
= Pr [ξi ] = 1/n. The upper bound applies even in the case where

the distribution F is known, and to stopping rules that like Algorithm 1 use dependent thresholds.

We provide a proof of this result in the full version of this paper.

Proposition 4.3. Let ϵ > 0. Then there exists n ∈ N and a distribution F such that for any stopping
time τ for which Pr [τ = i | τ > i − 1] is independent of i ,

E [Xτ ] ≤

(
1 −

1

e
+ ϵ

)
· E [max{X1, . . . ,Xn}] .

The second upper bound applies to any algorithm that like Algorithm 1 has access ton−1 samples

S1, . . . , Sn−1 from the underlying distribution and satisfies the following two natural conditions:

(i) if the value of the first random variable X1 is greater than all n − 1 samples, the algorithm stops;

and (ii) conditioned on reaching Xi , the probability of stopping at Xi is nondecreasing in i . The
proof of this result can be found in the full version of this paper.

Proposition 4.4. Let ϵ > 0. Then there exists n ∈ N and a distribution F such that for any
(n − 1,n)-stopping rule with stopping time τ that satisfies conditions (i) and (ii),

E [Xτ ] ≤

(
1 −

1

e
+ ϵ

)
· E [max{X1, . . . ,Xn}] .

4.4 A Parametric Lower Bound
We generalize our lower bound from Theorem 4.1 to γn samples when γ < 1. The idea is to

reinterpret some amount of values from X1, . . . ,Xn as samples, so that the number of remaining

values equals the number of samples and Algorithm 1 can be used.

Corollary 4.5. Let γ ∈ [0, 1] and X1,X2, . . . ,Xn be i.i.d. random variables from an unknown
distribution F . Further assume γn + n to be an even number. Then there exists an (γn,n)-stopping-rule
with stopping time τ such that

E [Xτ ] ≥
1 + γ

2

·

(
1 −

1

e

)
· E [max{X1, . . . ,Xn}] .

Proof. Let n′ :=
1+γ
2
· n ∈ N. Define S ′i := Si for all i ∈ [γn], S

′
γn+i := Xi for all i ∈ [n

′ − γn],

and X ′i := Xn′−γn+i for all i ∈ [n
′]. Note that X ′n′ = Xn , so this assignment is well-defined. We use

Algorithm 1 with associated stopping time τ on X ′
1
, . . . ,X ′n′ with samples S ′

1
, . . . , S ′n′−1. Then by

applying Theorem 4.1 we get

E
[
X ′τ

]
≥

(
1 −

1

e

)
· E

[
max{X ′

1
, . . . ,X ′n′}

]
≥

1 + γ

2

·

(
1 −

1

e

)
· E [max{X1, . . . ,Xn}] ,

as claimed. □

4.5 Close to Tight Upper Bound
While an improvement over the bound of 1−1/e ≈ 0.632 remains conceivable via more complicated

stopping rules, such an improvement cannot go beyond ln(2) ≈ 0.693. This is a consequence of the
following strengthening of Theorem 3.2, which provides a parametric upper bound for stopping

rules that have access to γ n samples for some γ ≥ 0 and is proven in the full version of this paper.

Theorem 4.6. Let δ > 0, γ ∈ Q. Then there exists n0 ∈ N such that for any n ≥ n0 and any
(γ n,n)-stopping rule with associated stopping time τ there exists a distribution F , not known to the
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Fig. 2. Visualization of the parametric lower bound (solid) and the parametric upper bound (dashed).

stopping rule, with the following property. When X1, . . . ,Xn are i.i.d. random variables drawn from F ,
we have

E[Xτ ] ≤ (b(γ ) + δ ) · E[max{X1, . . . ,Xn}],

where

b(γ ) =

{
1+γ
e if 1

e ≥
γ

1+γ

−γ · log
γ

1+γ else
.

See Figure 2 for a visualization. Note that b is a continuous function. Further, for γ = 1 the bound

is b(1) = ln(2) and that for large enough γ , namely γ ⪆ 1.32, this bound is dominated by the upper

bound of 0.745 [8].

5 SUPERLINEAR NUMBER OF SAMPLES
Our final result is that it is in fact possible to get arbitrarily close to the optimal approximation

guarantee of a stopping algorithm that knows the distribution [8], if we have access to O(n2)
samples from the distribution. We provide details and the proof in the full version of this paper.

Theorem 5.1. Let X1, . . . ,Xn be i.i.d. random variables drawn from an unknown distribution
F .Then for every ϵ > 0 and all n ≥ nϵ there exists an algorithm for choosing a stopping time τ that
uses O(n2) samples from the same distribution with

E [Xτ ] ≥ (0.745 − ϵ) · E [max{X1, . . . ,Xn}] .

In the full version of this paper we provide evidence that any algorithm that achieves this bound

with o(n2) samples would have to use very different techniques.
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