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Overview

• Part I (Inbal): Classic Theory
• Model
• Optimal Contracts
• Key Results

• Break (5-10 minutes)

• Part II (Paul): Modern Approaches
• Robustness
• Approximation
• Computational Complexity
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1. Robustness
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Motivation
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The classic principal-agent model [Holmström 1979, Grossmann and 
Hart 1983] suggests optimal contracts that

• Are rather complex and intransparent
• Exhibit undesirable properties (e.g., non-monotonicity)
• Do not resemble contracts used in practice (which tend to be 

simple, often linear)

Linear contract: ! " = $ % ", $ ∈ [0,1]



Milgrom-Holmström [1987]

“It is probably the great robustness of linear rules based on aggregates 
that accounts for their popularity. 
That point is not made as effectively as we would like by our model; we 
suspect that it cannot be made effectively in any traditional Bayesian 
model.” 
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Carroll’s Model [2015]

Recall: Action !" is specified by distribution #",% over rewards &% , and a 
cost '"
Twist:
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()
known to principal

(
chosen adversarially

set of actions

Principal only knows a subset 
of the actions

Agent chooses action 
from a larger set



Timing
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Principal who knows 
!" offers agent 

a contract 
($%, … , $()

Agent 
accepts 

(or refuses)

Agent takes 
costly, hidden

action 
*+ ∈ !

Action’s
outcome 

rewards the 
principal

Principal 
pays agent 
according 

to contract

Time



The Agent’s Perspective

• The agent chooses action !∗ from # that maximizes expected 
payment minus cost

!∗ ∈ !%&'!()* +,- ∈# ./~+ 1 % − 3
⇒ agent utility 56(1|#)

• Note: The agent can guarantee himself a certain expected utility by 
only maximizing over #:
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“reserve agent utility” 56(1|#:)



The Principal’s Perspective

• Denote the set of actions that maximize the agent’s utility for a given 
contract ! and set of actions " by

#∗(!|") = '()*'+,- .,0 ∈" 23~. ! ( − 6

• Then the principal solves the following max-min problem

789: ;<="⊇"? *'+,- .,0 ∈@∗(:|")2B~. [( − !(()]
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principal payoff EF(!|")EF



Reserve Principal Payoff?

• With a linear contract t(#) = & ' #, for any action ( = (), +):
-.~0 1 # = & ' -.~0[#]
-.~0 # − 1 # = 1 − ( ' -.~0 #

• So for every linear contract 1(#) = & ' # and incentivized action a = ), + :

78 ≥
1 − &
& ⋅ -.~0 1 # ≥ 1 − &

& ⋅ (-.~0 1 # − +)

⇒ 78 ≥ <=>
> ⋅ 7?(1|AB)
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welfare pie

Maximizing the RHS gives max-
min optimal contract



Max-Min Robustness

Theorem [Carroll’15] 
For all partially specified principal agent-settings with rewards !", … , !%
and known action set &' there exists a linear contract that maximizes 
().
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Key Steps in Proof

1. Argue that for any (not necessarily monotone) contract ! there is an 
affine contract !" with the same or better worst-case guarantee   
(see next few slides)

2. Show that for any such affine contract !’ there is an even better 
linear contract !′′
(see Carroll’s paper for details)
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Why Affine is Enough

• Fix an arbitrary contract !
(black dots)
• For any action " = (%, ') the 

agent may take, consider the 
point ()* + , )* !(+) )
• This point lies in the convex hull 

of +,, ! +, : 1 ≤ 0 ≤ 1
(gray area)
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Why Affine is Enough

• Moreover, the agent will only 
take actions that give him payoff 
at least !" # $%
(dark gray area)
• Point & is the point where 

expected payoff to the principal 
'[) − #())] is smallest
(bottom left of dark gray area)
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Why Affine is Enough

• Support line !′ to the convex hull 
at # is an affine contract, whose 
worst-case payoff to the 
principal is no worse than that of 
contract !
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Discussion

• Obviously: Not the only way in which one can formalize model 

uncertainty

• Standard approach in computer science in cases where input is 

stochastic:

• Assume details of the distributions are unknown

• But first moments (or first few moments) are known 

[E.g., Scarf’58, …, Azar-Daskalakis-Micali-Weinberg’13, Bandi-Bertsimas’14]
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New Notion of Robustness

In an EC’19 paper (with Tim Roughgarden) we explore contract design 
with moment information:

• Fixed set of outcomes !", … , !%
• There are & actions with costs '", … , '(
• Details of the distributions )", … , )( are unknown
• But their expected rewards *+ = -.~01[!] for 4 = 1,… , & are known 

(“compatible distributions”)
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New Notion of Robustness

Theorem [Dütting, Roughgarden, Talgam-Cohen’19a]
For every contract setting with known expected rewards, a linear
contract maximizes the principal’s expected payoff in the worst-case
over compatible distributions.

So: Carroll’s same conclusion, but under a very different hypothesis!

(Come to the EC talk!)
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Open Questions

• Is there a unification of Carroll’s and our result?
• Study other models of uncertainty (e.g., distributions over outcomes 

are only known approximately [Bergemann-Schlag’11, Cai-Daskalakis
‘17, Dütting-Kesselheim’19])
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More Generally

A rapidly growing area in economics and computer science: 

• Contracts [Carroll’15, Dütting-Roughgarden-Talgam-Cohen’19a]

• Revenue maximizing auctions [Bergemann-Schlag’11, Azar-Daskalakis-

Micali-Weinberg’13, Bandi-Bertsimas’14, Carroll’17, Cai-

Daskalakis’17, Carrasco-et-al.’18, Gravin-Lu’18, Bei-Gravin-Lu-Tang’19]

• Posted pricing and prophet inequalities [Dütting-Kesselheim’19]
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2. Approximation
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A Powerful Tool from AGT

• Given a simple microeconomic mechanism, bound the worst-case 
performance loss relative to the optimal mechanism

• For a maximization problem: Find largest ! ∈ [0,1] such that for all 
instances

()* + ≥ ! - ./0 +
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Performance of simple
mechanism on instance 

Optimal performance on 
instance 



Example: Linear Contracts

!" = " !$ = %
Action 1 &',' = 1 &',* = 0 ,' = 0
Action 2 &*,' = 0 &*,* = 1 ,* = 4/3
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To find the optimal contract:
• The best way to incentivize action 0'is to pay 1 = (0,0) for an 

expected payoff of 1
• The best way to incentivize action 0* is to pay t = (0,4/3) for an 

expected payoff of 3 – 4/3 = 5/3
⟹ 89: = 5/3 1* =

,*
&*,* − &',*



Example: Linear Contracts

To find the best linear contract:
• Draw upper envelope with ! on 
"-axis and !# − % on &-axis
• Each action corresponds to a line
• For every given !, highest line 

corresponds to best (= chosen) 
action
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Example: Linear Contracts

• Here smallest ! at which action 
1 and action 2 are implemented 
is ! = 0 and ! = 2/3
⟹ ()* = 1 < 5/3 

(Note: This shows that , can be at 
most 3/5)
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Approximation Result

Theorem (informal): [Dütting, Roughgarden, Talgam-Cohen’19a]
Linear contracts achieve good approximation except in pathological 
settings with simultaneously:
• many actions; 
• big spread among actions of expected rewards; 
• big spread among actions of costs
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Example of a Pathological Setting

Let ! → 0
(%&, %(, %), … ) = (1, 1! ,

1
!( , … )

(.&, .(, .), … ) = (0, 1! − 2 + !,
1
!( − 3 + 2!,… )
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Formally

Theorem [Dütting, Roughgarden, Talgam-Cohen’19a]
! = worst-case ratio of optimal contract and best linear contract
• with " actions, ! = ";
• with ratio $ of highest to lowest $%, ! = Θ(log $);
• with ratio , of highest to lowest -%, ! = Θ(log ,)

• Upper bound w.r.t. to first best, lower bound w.r.t. optimal contract
• Lower bounds apply even under MLRP
• Bounds are tight, even for best monotone contract!
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Open Questions

• We only scratched the surface! 
• The general question is: For which classes of 

contracts and under which assumptions on the 
setting can we get good (constant factor) 
approximations?
• Cf. ”simple vs. optimal mechanisms” literature 

[Hartline and Roughgarden’09,…] 
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3. Computational Complexity
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Motivation

• If everything is given explicitly and there is only one agent then not 
interesting computationally 
• If there is more than one agent or if some part of the input is given 

implicitly things become interesting:
• E.g. an action could consist of several binary decisions
• E.g. outcomes could be subsets of a ground set
• E.g. ...
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Prior Work

• A paper which was way ahead of its time: 
Combinatorial Agency paper of Babaioff-Feldman-Nisan [2006, 2012]    
(and follow-up work)
• Studies a setting with multiple agents, in which each agent can take a 

binary action
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New Approach

In ongoing work (with Tim Roughgarden) we consider the following 
succinct single-agent model:

• There are ! items, " = 2% possible outcomes
• Given action &', each item ( is included in the outcome 

independently wp )',+
• The principal’s reward is the sum of rewards ,+ for each item (

included in the outcome
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Example from Part I
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No visitor 
!" = 0

General visitor 
!% = 3

Targeted visitor 
!' = 7

Both visitors
!) = 10

Low effort 
+" = 0 0.72 0.18 0.08 0.02

Medium effort 
+% = 1 0.12 0.48 0.08 0.32

High effort
+' = 2 0 0.4 0 0.6

Additive

Product

E.g. Pr[4565!78 | 7'] = 1, Pr[;7!45;5< | 7'] = 0.6



Goal

Use succinct structure to exponentially speed-up finding the optimal 
contract in comparison to the naïve LP-based method
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Recall: Naïve LP-based Approach 

• Based on solving ! instances of the “MIN-PAY” problem
• Given action "#, find optimal contract that implements "#

minimize )
*
+#,*-*

s.t. )
*
+#,*-* − 2# ≥)

*
+#4,*-* − 2#4 ∀67 ≠ 6 (IC)

There are polynomial in =, exponential in > many variables, but only !
constraints – Ellipsoid to the rescue? 
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The Dual

maximize '
()*(

+()(-( − -())

s.t. '
()*(

+() − 1 ≤
∑6)76 86)96),;

96,; ∀= ∈ [@]

A separation oracle boils down to finding an item subset with minimum 
likelihood in the combination distribution ∑()*( +()B() relative to B(
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Computational Hardness

• Solving the separation oracle exactly is NP-hard
• In fact computing the optimal expected payoff in succinct contract 

settings in time polynomial in ! turns out to be NP-hard
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Approximate IC

A solution from AGT: Relax the IC constraints!

Definition: Given a contract !, action "# is $-IC if
(1 + $)∑* +#,*!* − .# ≥ ∑* +#0,*!* − .#0 ∀23 ≠ 2

In normalized settings, the agent loses ≤ $ by choosing a $-IC action

[By $-IC contract we mean a contract ! and $-IC action "# that pleases 
the principal]
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Theorem

Let OPT be the expected payoff of the optimal (IC) contract.

Theorem [Dütting, Roughgarden, Talgam-Cohen’19b]
There is an Ellipsoid-based algorithm that given a succinct contract 
setting with $ items and a parameter % > 0, returns a %-IC contract 
with expected payoff ≥ OPT in time polynomial in $ and 1/%.

(Recall: Running time of naïve method is exponential in $)
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Ellipsoid-Based Algorithm

• Strengthened dual:
maximize '

()*(
+()(-( − -())

s.t. 1 + 5 '
()*(

+() − 1 ≤ ∑8)98 :8);8),=
;8,= ∀? ∈ [B]

• Run Ellipsoid calling an FPTAS for the separation oracle 
• FPTAS runs in time polynomial in D and EF, and exponential in G
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Additional Results

In the paper [Dütting, Roughgarden, Talgam-Cohen’19b] we also show:

• Hardness of approximation for exactly IC contracts
• Constant factor !-IC contracts
• ….

(Watch out for the paper!)
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Open Questions

• Many interesting computational questions
• Approximation probably even more natural than in the mechanism 

design world
• Mostly unexplored …!
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4. Concluding Remarks
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Important Applications

• Freelancing and crowdsourcing platforms
• Start-up funding platforms
• Blockchain and smart contracts
• Venture capital contracts
• Government procurement
• …
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Growing Momentum
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• Combinatorial agency [Babaioff-Feldman-Nisan’12,…]
• Contract complexity [Babaioff and Winter’14,…]
• Incentivizing exploration [Frazier-Kempe-Kleinberg-Kleinberg’14,…]
• Robustness [Carroll’15,…]
• Adaptive design [Ho-Slivkins-Vaughan’16,…]

• Delegated search [Kleinberg and Kleinberg’18,…]
• Information acquisition [Azar and Micali’18,…]
• Robustness [Dütting-Roughgarden-Talgam-Cohen’19a,…]
• Succinct models [Dütting-Roughgarden-Talgam-Cohen’19b,…]
• VCG contracts [Lavi-Shamash’19,…]
• Strategic classification [Kleinberg-Raghavan’19,…] (At this year’s EC)



Many Open Problems

• There are lost of interesting open questions even in the most 
basic/classic models!
• The algorithmic perspective could be a powerful tool to complement 

the classic econ approach

Thanks! Questions?
47

Tutorial website: 
http://personal.lse.ac.uk/act/index.htm
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