Contract Theory: A New Frontier for AGT

Part II: Modern Approaches

Paul Dütting – London School of Economics
Inbal Talgam-Cohen – Technion

ACM EC'19 Tutorial
June 2019

Overview

- Part I (Inbal): Classic Theory
 - Model
 - Optimal Contracts
 - Key Results
- Break (5-10 minutes)
- Part II (Paul): Modern Approaches
 - Robustness
 - Approximation
 - Computational Complexity

1. Robustness

Motivation

The classic principal-agent model [Holmström 1979, Grossmann and Hart 1983] suggests optimal contracts that

- Are rather complex and intransparent
- Exhibit undesirable properties (e.g., non-monotonicity)
- Do not resemble contracts used in practice (which tend to be simple, often linear)

Linear contract: $t(r) = \alpha \cdot r, \alpha \in [0,1]$

Milgrom-Holmström [1987]

"It is probably the great robustness of linear rules based on aggregates that accounts for their popularity.

That point is not made as effectively as we would like by our model; we suspect that it cannot be made effectively in any traditional Bayesian model."

Carroll's Model [2015]

Recall: Action a_i is specified by distribution $F_{i,j}$ over rewards r_j , and a cost c_i

Twist:

set of actions

Timing

The Agent's Perspective

• The agent chooses action a^* from \mathcal{A} that maximizes expected payment minus cost

$$a^* \in argmax_{a=(F,c)\in\mathcal{A}}(\mathbb{E}_{r\sim F}[t(r)]-c)$$

 \Rightarrow agent utility $V_A(t|\mathcal{A})$

• Note: The agent can guarantee himself a certain expected utility by only maximizing over \mathcal{A}_0

"reserve agent utility" $V_A(t|\mathcal{A}_0)$

The Principal's Perspective

• Denote the set of actions that maximize the agent's utility for a given contract t and set of actions $\mathcal A$ by

$$A^*(t|\mathcal{A}) = argmax_{a=(F,c)\in\mathcal{A}}(\mathbb{E}_{x\sim F}[t(r)] - c)$$

Then the principal solves the following max-min problem

$$\sup_{t} \inf_{\mathcal{A} \supseteq \mathcal{A}_0} \max_{a=(F,c) \in A^*(t|\mathcal{A})} \mathbb{E}_{r \sim F} \left[r - t(r) \right]$$
 V_P principal payoff $V_P(t|\mathcal{A})$

Reserve Principal Payoff?

• With a linear contract $t(r) = \alpha \cdot r$, for any action $\alpha = (F, c)$:

$$\mathbb{E}_{r \sim F}[t(r)] = \alpha \cdot \mathbb{E}_{r \sim F}[r]$$

$$\mathbb{E}_{r \sim F}[r - t(r)] = (1 - a) \cdot \mathbb{E}_{r \sim F}[r]$$

welfare pie

• So for every linear contract $t(r) = \alpha \cdot r$ and incentivized action a = (F, c):

$$V_P \ge \frac{1-\alpha}{\alpha} \cdot \mathbb{E}_{r \sim F}[t(r)] \ge \frac{1-\alpha}{\alpha} \cdot (\mathbb{E}_{r \sim F}[t(r)] - c)$$

$$\Rightarrow V_P \geq \frac{1-\alpha}{\alpha} \cdot V_A(t|\mathcal{A}_0)$$

Maximizing the RHS gives maxmin optimal contract

Max-Min Robustness

Theorem [Carroll'15]

For all partially specified principal agent-settings with rewards $r_1, ..., r_m$ and known action set \mathcal{A}_0 there exists a linear contract that maximizes V_P .

Key Steps in Proof

- 1. Argue that for any (not necessarily monotone) contract t there is an affine contract t' with the same or better worst-case guarantee (see next few slides)
- 2. Show that for any such affine contract t' there is an even better linear contract t'' (see Carroll's paper for details)

Why Affine is Enough

- Fix an arbitrary contract t
 (black dots)
- For any action a = (F, c) the agent may take, consider the point $(\mathbb{E}_F[r], \mathbb{E}_F[t(r)])$
- This point lies in the convex hull of $\{(r_j, t(r_j)): 1 \le j \le m\}$ (gray area)

Why Affine is Enough

- Moreover, the agent will only take actions that give him payoff at least $V_A(t|\mathcal{A}_0)$ (dark gray area)
- Point Q is the point where expected payoff to the principal $\mathbb{E}[r-t(r)]$ is smallest (bottom left of dark gray area)

Why Affine is Enough

 Support line t' to the convex hull at Q is an affine contract, whose worst-case payoff to the principal is no worse than that of contract t

Discussion

- Obviously: Not the only way in which one can formalize model uncertainty
- Standard approach in computer science in cases where input is stochastic:
 - Assume details of the distributions are unknown
 - But first moments (or first few moments) are known

[E.g., Scarf'58, ..., Azar-Daskalakis-Micali-Weinberg'13, Bandi-Bertsimas'14]

New Notion of Robustness

In an EC'19 paper (with Tim Roughgarden) we explore contract design with moment information:

- Fixed set of outcomes r_1, \dots, r_m
- There are n actions with costs c_1, \ldots, c_n
- Details of the distributions F_1, \dots, F_n are unknown
- But their expected rewards $R_i = \mathbb{E}_{r \sim F_i}[r]$ for i = 1, ..., n are known ("compatible distributions")

New Notion of Robustness

Theorem [Dütting, Roughgarden, Talgam-Cohen'19a]

For every contract setting with known expected rewards, a linear contract maximizes the principal's expected payoff in the worst-case over compatible distributions.

So: Carroll's same conclusion, but under a very different hypothesis!

(Come to the EC talk!)

Open Questions

- Is there a unification of Carroll's and our result?
- Study other models of uncertainty (e.g., distributions over outcomes are only known approximately [Bergemann-Schlag'11, Cai-Daskalakis '17, Dütting-Kesselheim'19])

More Generally

A rapidly growing area in economics and computer science:

- Contracts [Carroll'15, Dütting-Roughgarden-Talgam-Cohen'19a]
- Revenue maximizing auctions [Bergemann-Schlag'11, Azar-Daskalakis-Micali-Weinberg'13, Bandi-Bertsimas'14, Carroll'17, Cai-Daskalakis'17, Carrasco-et-al.'18, Gravin-Lu'18, Bei-Gravin-Lu-Tang'19]
- Posted pricing and prophet inequalities [Dütting-Kesselheim'19]

2. Approximation

A Powerful Tool from AGT

- Given a simple microeconomic mechanism, bound the worst-case performance loss relative to the optimal mechanism
- For a maximization problem: Find largest $\beta \in [0,1]$ such that for all instances

Example: Linear Contracts

	$r_1 = 1$	$r_2 = 3$	
Action 1	$F_{1,1} = 1$	$F_{1,2}=0$	$c_1 = 0$
Action 2	$F_{2,1} = 0$	$F_{2,2} = 1$	$c_2 = 4/3$

To find the optimal contract:

- The best way to incentivize action a_1 is to pay t=(0,0) for an expected payoff of 1
- The best way to incentivize action a_2 is to pay t = (0,4/3) for an expected payoff of 3 4/3 = 5/3

$$\implies OPT = 5/3$$

$$_{2} = \frac{c_{2}}{F_{2,2} - F_{1,2}}$$

Example: Linear Contracts

To find the best linear contract:

- Draw upper envelope with α on x-axis and $\alpha R c$ on y-axis
- Each action corresponds to a line
- For every given α , highest line corresponds to best (= chosen) action

Example: Linear Contracts

• Here smallest α at which action 1 and action 2 are implemented is $\alpha = 0$ and $\alpha = 2/3$

$$\Rightarrow ALG = 1 < 5/3$$

(Note: This shows that β can be at most 3/5)

Approximation Result

Theorem (informal): [Dütting, Roughgarden, Talgam-Cohen'19a]

Linear contracts achieve good approximation except in pathological settings with simultaneously:

- many actions;
- big spread among actions of expected rewards;
- big spread among actions of costs

Example of a Pathological Setting

Let $\epsilon \to 0$ $(R_1, R_2, R_3, \dots) = (1, \frac{1}{\epsilon}, \frac{1}{\epsilon^2}, \dots)$ $(c_1, c_2, c_3, \dots) = (0, \frac{1}{\epsilon} - 2 + \epsilon, \frac{1}{\epsilon^2} - 3 + 2\epsilon, \dots)$

Formally

Theorem [Dütting, Roughgarden, Talgam-Cohen'19a]

- ρ = worst-case ratio of optimal contract and best linear contract
- with n actions, $\rho = n$;
- with ratio R of highest to lowest R_i , $\rho = \Theta(\log R)$;
- with ratio C of highest to lowest c_i , $\rho = \Theta(\log C)$
- Upper bound w.r.t. to first best, lower bound w.r.t. optimal contract
- Lower bounds apply even under MLRP
- Bounds are tight, even for best monotone contract!

Open Questions

- We only scratched the surface!
- The general question is: For which classes of contracts and under which assumptions on the setting can we get good (constant factor) approximations?
- Cf. "simple vs. optimal mechanisms" literature [Hartline and Roughgarden'09,...]

3. Computational Complexity

Motivation

- If everything is given explicitly and there is only one agent then not interesting computationally
- If there is more than one agent or if some part of the input is given implicitly things become interesting:
 - E.g. an action could consist of several binary decisions
 - E.g. outcomes could be subsets of a ground set
 - E.g. ...

Prior Work

- A paper which was way ahead of its time:
 - Combinatorial Agency paper of Babaioff-Feldman-Nisan [2006, 2012] (and follow-up work)
- Studies a setting with multiple agents, in which each agent can take a binary action

New Approach

In ongoing work (with Tim Roughgarden) we consider the following succinct single-agent model:

- There are μ items, $m=2^{\mu}$ possible outcomes
- Given action a_i , each item k is included in the outcome independently wp $F_{i,k}$
- The principal's reward is the sum of rewards r_k for each item k included in the outcome

Example from Part I

Additive

	No visitor $r_1=0$	General visiter $r_2 = 3$	Targeted visitor $r_3 = 7$	Both visitors $r_4 = 10$	
Low effort $c_1 = 0$	0.72	0.18	0.08	0.02	
Medium effort $c_2 = 1$	0.12	0.48	0.08	0.32 Pro	duct
High effort $c_3 = 2$	0	0.4	0	0.6	

E.g. $Pr[general \mid a_3] = 1$, $Pr[targeted \mid a_3] = 0.6$

Goal

Use succinct structure to exponentially speed-up finding the optimal contract in comparison to the naïve LP-based method

Recall: Naïve LP-based Approach

- Based on solving n instances of the "MIN-PAY" problem
- Given action a_i , find optimal contract that implements a_i

minimize
$$\sum_{j} F_{i,j} t_{j}$$

s.t. $\sum_{j} F_{i,j} t_{j} - c_{i} \ge \sum_{j} F_{i',j} t_{j} - c_{i'} \quad \forall i' \ne i$ (IC)

There are polynomial in m, exponential in μ many variables, but only n constraints – Ellipsoid to the rescue?

The Dual

maximize
$$\sum_{i'\neq i} \lambda_{i'}(c_i - c_{i'})$$

s.t.
$$\sum_{i' \neq i} \lambda_{i'} - 1 \le \frac{\sum_{i' \neq i} \lambda_{i'} F_{i',j}}{F_{i,j}} \quad \forall j \in [m]$$

A separation oracle boils down to finding an item subset with minimum likelihood in the combination distribution $\sum_{i'\neq i} \lambda_{i'} F_{i'}$ relative to F_i

Computational Hardness

- Solving the separation oracle exactly is NP-hard
- In fact computing the optimal expected payoff in succinct contract settings in time polynomial in μ turns out to be NP-hard

Approximate IC

A solution from AGT: Relax the IC constraints!

Definition: Given a contract t, action a_i is δ -IC if

$$(1+\delta)\sum_{j}F_{i,j}t_{j}-c_{i}\geq\sum_{j}F_{i',j}t_{j}-c_{i'}\quad\forall i'\neq i$$

In normalized settings, the agent loses $\leq \delta$ by choosing a δ -IC action

[By δ -IC contract we mean a contract t and δ -IC action a_i that pleases the principal]

Theorem

Let OPT be the expected payoff of the optimal (IC) contract.

Theorem [Dütting, Roughgarden, Talgam-Cohen'19b]

There is an Ellipsoid-based algorithm that given a succinct contract setting with μ items and a parameter $\delta > 0$, returns a δ -IC contract with expected payoff \geq OPT in time polynomial in μ and $1/\delta$.

(Recall: Running time of naïve method is exponential in μ)

Ellipsoid-Based Algorithm

Strengthened dual:

maximize
$$\sum_{i'\neq i} \lambda_{i'}(c_i - c_{i'})$$

s.t.
$$(1 + \delta) \left(\sum_{i' \neq i} \lambda_{i'} - 1 \right) \leq \frac{\sum_{i' \neq i} \lambda_{i'} F_{i',j}}{F_{i,j}} \quad \forall j \in [m]$$

- Run Ellipsoid calling an FPTAS for the separation oracle
- FPTAS runs in time polynomial in μ and $\frac{1}{\delta}$, and exponential in n

Additional Results

In the paper [Dütting, Roughgarden, Talgam-Cohen'19b] we also show:

- Hardness of approximation for exactly IC contracts
- Constant factor δ -IC contracts

•

(Watch out for the paper!)

Open Questions

- Many interesting computational questions
- Approximation probably even more natural than in the mechanism design world
- Mostly unexplored ...!

4. Concluding Remarks

Important Applications

- Freelancing and crowdsourcing platforms
- Start-up funding platforms
- Blockchain and smart contracts
- Venture capital contracts
- Government procurement

• ...

Growing Momentum

- Combinatorial agency [Babaioff-Feldman-Nisan'12,...]
- Contract complexity [Babaioff and Winter'14,...]
- Incentivizing exploration [Frazier-Kempe-Kleinberg-Kleinberg'14,...]
- Robustness [Carroll'15,...]
- Adaptive design [Ho-Slivkins-Vaughan'16,...]
- Delegated search [Kleinberg and Kleinberg'18,...]
- Information acquisition [Azar and Micali'18,...]
- Robustness [Dütting-Roughgarden-Talgam-Cohen'19a,...]
- Succinct models [Dütting-Roughgarden-Talgam-Cohen'19b,...]
- VCG contracts [Lavi-Shamash'19,...]
- Strategic classification [Kleinberg-Raghavan'19,...]

(At this year's EC)

Many Open Problems

- There are lost of interesting open questions even in the most basic/classic models!
- The algorithmic perspective could be a powerful tool to complement the classic econ approach

Tutorial website: http://personal.lse.ac.uk/act/index.htm

Thanks! Questions?

References

Gabriel Carrol. Robustness and Linear Contracts. American Economic Review, 105 (2), 2015, 536-563.

Paul Dütting, Tim Roughgarden, Inbal Talgam-Cohen. Simple versus Optimal Contracts. Proc. 20th ACM Conference on Economics and Computation, 2019, 369-387.

Paul Dütting, Tim Roughgarden, Inbal Talgam-Cohen. The Complexity of Contracts. Working paper, 2019.