Payment Rules through Discriminant-Based Classifiers

Paul Dütting
Stanford University

Felix Fischer, Pichayut Jirapinyo, John. K. Lai, Benjamin Lubin, and David C. Parkes

Econ Theory Lunch @ Stanford
March 31, 2014
Introduction

Mechanism Design

- Agents have private values for different outcomes
 - Agents have quasi-linear utilities, i.e., utility = value - payment
- Mechanism solicits reports, computes outcome and payments
 - Mechanism optimizes objective, e.g., welfare = sum of true values
Mechanism Design

- Agents have private values for different outcomes
 - Agents have quasi-linear utilities, i.e., utility = value - payment
- Mechanism solicits reports, computes outcome and payments
 - Mechanism optimizes objective, e.g., welfare = sum of true values

Example Applications

- Allocation of arrival/departure slots to airlines
- Reallocating spectrum rights
- Selling online ads
Classic Approach to Mechanism Design

- Find mechanism to optimize desiderata
- Subject to incentive constraints
Introduction

Classic Approach to Mechanism Design

- Find mechanism to optimize desiderata
- Subject to incentive constraints

Example: Strategyproof Welfare Maximization

- Mechanism (approximately) maximizes welfare
 - Sum of values is (approximately) maximal
- Mechanism is strategyproof
 - Each agent maximizes utility by reporting truthfully
 - No matter what reports of other agents are
Example: Strategyproof Welfare Maximization (cont’d)

- If welfare can be optimized exactly
 - Can use Vickrey-Clarke-Groves (VCG) mechanism
- If welfare cannot be optimized exactly
 - Generally approximation plus VCG payments won’t work

Exemption: Maximal-in-range algorithms (Nisan and Ronen 2002)
Example: Strategyproof Welfare Maximization (cont’d)

- Strategyproofness in single-parameter settings
 - Outcome rule must be monotone, and then threshold payments
- Strategyproofness in multi-parameter settings
 - Implementable outcome rules characterized by cyclic monotonicity
 - Some partial characterizations, e.g., certain LP-based algorithms

See: (Archer and Tardos 2001), (Ashlagi et al. 2010), (Lavi and Swamy 2005)
Introduction

Example: Strategyproof Welfare Maximization (cont’d)

- Strategyproofness in single-parameter settings
 - Outcome rule must be monotone, and then threshold payments
- Strategyproofness in multi-parameter settings
 - Implementable outcome rules characterized by cyclic monotonicity
 - Some partial characterizations, e.g., certain LP-based algorithms

See: (Archer and Tardos 2001), (Ashlagi et al. 2010), (Lavi and Swamy 2005)

Bottom line: Classic approach requires *de novo* design
Question: Can we somehow automate this process?

Our Approach: Fix Heuristic, Learn Payment Rule

- Start with any heuristic for achieving objective
 - Possible objectives are welfare, fairness, etc.
 - Revenue considerations should be secondary
- Learn payments that make it maximally strategyproof
 - Payments will minimize expected ex post regret
Introduction

Question: Can we somehow automate this process?

Our Approach: Fix Heuristic, Learn Payment Rule

- Start with any heuristic for achieving objective
 - Possible objectives are welfare, fairness, etc.
 - Revenue considerations should be secondary
- Learn payments that make it maximally strategyproof
 - Payments will minimize expected ex post regret
- Enabled by surprisingly close connection between
 - (Approximately) strategyproof mechanism design
 - (Approximately) exact classification
Introduction

Question: Can we somehow automate this process?

Our Approach: Fix Heuristic, Learn Payment Rule

- Start with any heuristic for achieving objective
 - Possible objectives are welfare, fairness, etc.
 - Revenue considerations should be secondary
- Learn payments that make it maximally strategyproof
 - Payments will minimize expected ex post regret
- Enabled by surprisingly close connection between
 - (Approximately) strategyproof mechanism design
 - (Approximately) exact classification

Upshot: Only need to worry about heuristic, not incentives
Related Approach #1: Automated Mechanism Design

- Formulate search for mechanism that optimizes objective subject to incentives as a mathematical program
- Use the computer to solve it

See: (Conitzer and Sandholm 2002), (Conitzer and Guo 2010)

Related Approach #2: Black Box Reductions

- Turn any approximation algorithm into Bayes-Nash incentive compatible (BNIC) mechanism with essentially the same performance guarantee

See: (Bei and Huang 2010), (Hartline et al. 2010), (Cai et al. 2013)
Outline of this Talk

1 - Model and Definitions

2 - Theoretical Results

3 - Experimental Results

4 - Conclusion and Future Work
Model and Definitions

First Part: Mechanism design definitions

Toy example: Single-item, second price auction
Model and Definitions

First Part: Mechanism design definitions

Toy example: Single-item, second price auction

Mechanism Design Problem

- Agents: $N = \{1, \ldots, n\}$
- Outcomes: $\Omega = \prod_i \Omega_i$
- Types: $\Theta = \prod_i \Theta_i$
- Valuations: $v_i : \Theta_i \times \Omega_i \rightarrow \mathbb{R}_{\geq 0}$
- Distribution on types: Δ
Model and Definitions

First Part: Mechanism design definitions

Toy example: Single-item, second price auction

Mechanism Design Problem

- **Agents:** $N = \{1, \ldots, n\}$
- **Outcomes:** $\Omega = \prod_i \Omega_i$
- **Types:** $\Theta = \prod_i \Theta_i$
- **Valuations:** $v_i : \Theta_i \times \Omega_i \to \mathbb{R}_{\geq 0}$
- **Distribution on types:** Δ

(Direct) Mechanism

- **Outcome rule:** $g : \Theta \to \prod_i \Omega_i$
- **Payment rule:** $p : \Theta \to \mathbb{R}_{\geq 0}$
Strategyproofness

- Each agent maximizes its utility by reporting its true type, no matter what other agents report
- \(\forall i \in N, \theta_i \in \Theta_i \), and \(\theta' \in \Theta : u_i((\theta_i, \theta'_{-i}), \theta_i) \geq u_i((\theta'_i, \theta'_{-i}), \theta_i) \)
Model and Definitions

Strategyproofness

- Each agent maximizes its utility by reporting its true type, no matter what other agents report
- \(\forall i \in N, \theta_i \in \Theta_i, \text{ and } \theta' \in \Theta : u_i((\theta_i, \theta'_{-i}), \theta_i) \geq u_i((\theta'_i, \theta'_{-i}), \theta_i) \)

Ex Post Regret

- How much can agent \(i \) gain if instead of reporting type \(\theta_i \) it reported type \(\theta'_i \) instead?
- \(\forall i \in N, \theta \in \Theta : r_i(\theta_i, \theta_{-i}) = \max_{\theta'_i \in \Theta_i} u_i((\theta'_i, \theta_{-i}), \theta_i) - u_i((\theta_i, \theta_{-i}), \theta_i) \)
Model and Definitions

Strategyproofness

- Each agent maximizes its utility by reporting its true type, no matter what other agents report
- \(\forall i \in N, \theta_i \in \Theta_i, \text{ and } \theta' \in \Theta : u_i((\theta_i, \theta'_-i), \theta_i) \geq u_i((\theta'_i, \theta'_-i), \theta_i) \)

Ex Post Regret

- How much can agent \(i \) gain if instead of reporting type \(\theta_i \) it reported type \(\theta'_i \) instead?
- \(\forall i \in N, \theta \in \Theta : r_i(\theta_i, \theta_-i) = \max_{\theta'_i \in \Theta_i} u_i((\theta'_i, \theta_-i), \theta_i) - u_i((\theta_i, \theta_-i), \theta_i) \)

Hint: Think about regret as quantifiable relaxation of strategyproofness
Characterization of Strategyproofness

Mechanism \((g, p)\) is strategyproof if and only if for every \(\theta \in \Theta\),

- \(p_i(\theta) = t_i(\theta_{-i}, g_i(\theta))\) for all \(i \in N\), and
- \(g_i(\theta) \in \arg \max_{\omega_i' \in \Omega_i} (v_i(\theta_i, \omega_i') - t_i(\theta_{-i}, \omega_i'))\) for all \(i \in N\),

for a price function \(t_i : \Theta_{-i} \times \Omega_i \rightarrow \mathbb{R}_{\geq 0}\).
Model and Definitions

Second Part: Classification definition

Toy example: Pictures of animals, “cat” or “no cat”
Second Part: Classification definition

Toy example: Pictures of animals, “cat” or “no cat”

Classification Problem

- Input domain: X
- Output domain: Y
- Distribution on inputs: D
- Target function: $h^*: X \rightarrow Y$
Model and Definitions

Second Part: Classification definition

Toy example: Pictures of animals, “cat” or “no cat”

Classification Problem

- Input domain: X
- Output domain: Y
- Distribution on inputs: D
- Target function: $h^*: X \rightarrow Y$

Discriminant-Based Classifier

- Classifier: $h(x) = \arg \max_{y \in Y} f(x, y)$
- Discriminant function: $f: X \times Y \rightarrow \mathbb{R}$
Model and Definitions

Exact Classification

- Outcome of classifier and outcome of target function always coincide
- $\forall x \in X: h(x) = h^*(x)$
Model and Definitions

Exact Classification

- Outcome of classifier and outcome of target function always coincide
- $\forall x \in X: h(x) = h^*(x)$

Classification Error

- Classifier minimizes generalization error = expected discriminant loss
- $R_D(h) = \int_X [f(x, h(x)) - f(x, h^*(x))] D(x) \, dx$
Theoretical Results

Observation: Structurally almost identical problems (!)

Mapping between Classification and Mechanism Design

- Input domain: X - Types: Θ
- Output domain: Y - Outcomes: Ω
- Distribution on inputs: D - Distribution on types: Δ
- Target function: h^* - Outcome rule: g

For simplicity: Assume agent symmetry for remainder of talk
Strategyproof Mechanism

- \(\forall \theta \in \Theta : g_1(\theta) = \arg \max_{\omega_1 \in \Omega_1} (v(\theta_1, \omega'_1) - t_1(\theta_{-1}, \omega'_1)) \)

Exact Discriminant-Based Classifier

- \(\forall x \in X : h^*(x) = h(x) = \arg \max_{y \in Y} f(x, y) \)
Theoretical Results

Strategyproof Mechanism

- \(\forall \theta \in \Theta: g_1(\theta) = \arg\max_{\omega_1' \in \Omega_1} (v(\theta_1, \omega_1') - t_1(\theta_1, \omega_1')) \)

Exact Discriminant-Based Classifier

- \(\forall x \in X: h^*(x) = h(x) = \arg\max_{y \in Y} f(x, y) \)
- Rename: \(X \rightarrow \Theta, h^* \rightarrow g_1, Y \rightarrow \Omega_1 \)
Theoretical Results

Strategyproof Mechanism

- $\forall \theta \in \Theta: g_1(\theta) = \arg\max_{\omega'_1 \in \Omega_1} (v(\theta_1, \omega'_1) - t_1(\theta_{-1}, \omega'_1))$

Exact Discriminant-Based Classifier

- $\forall x \in X : h^*(x) = h(x) = \arg\max_{y \in Y} f(x, y)$
- Rename: $X \rightarrow \Theta$, $h^* \rightarrow g_1$, $Y \rightarrow \Omega_1$
- $\forall \theta \in \Theta : g_1(\theta) = h(\theta) = \arg\max_{\omega'_1 \in \Omega_1} f(\theta, \omega'_1)$
Theoretical Results

Idea: Impose additional structure on discriminant function

Admissible Discriminant-Based Classifier

- Restrict how discriminant function can depend on input and output
- \(\forall \theta \in \Theta, \omega_1 \in \Omega_1: f(\theta, \omega_1) = v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1) \)

Links Classification Accuracy to Regret

- Discriminant loss = Ex post regret
- Generalization error = Expected ex post regret
Theoretical Results

Putting it all together, this suggests the following approach:

1. Given type space Θ, distribution over types Δ, and outcome rule $g_1 : \Theta \rightarrow \Omega_1$
Putting it all together, this suggests the following approach:

1. Given type space Θ, distribution over types Δ, and outcome rule $g_1: \Theta \rightarrow \Omega_1$.
2. Generate training samples consisting of types-outcome to agent 1 pairs $(\theta^t, g_1(\theta^t))_{t=1,...,T}$.

Paul Dütting

Payment Rules

March 31, 2014
Putting it all together, this suggests the following approach:

1. Given type space Θ, distribution over types Δ, and outcome rule $g_1 : \Theta \rightarrow \Omega_1$

2. Generate training samples consisting of types-outcome to agent 1 pairs $(\theta^t, g_1(\theta^t))_{t=1,\ldots,T}$

3. Train admissible discriminant-based classifier $h(\theta) = \arg\max_{\omega_1 \in \Omega_1} (v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1))$ to predict outcome rule g_1
Putting it all together, this suggests the following approach:

1. Given type space Θ, distribution over types Δ, and outcome rule $g_1 : \Theta \rightarrow \Omega_1$
2. Generate training samples consisting of types-outcome to agent 1 pairs $(\theta^t, g_1(\theta^t))_{t=1,...,T}$
3. Train admissible discriminant-based classifier $h(\theta) = \arg \max_{\omega_1 \in \Omega_1} (v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1))$ to predict outcome rule g_1
4. Use $t = (t_1, \ldots, t_1)$ as payment rule in mechanism
Theoretical Results

Summary of Theoretical Results

Theorem 1. Exact admissible classifier

\[h(\theta) = \arg \max_{\omega_1 \in \Omega_1} f(\theta, \omega_1) \]

with \(f(\theta, \omega_1) = v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1) \)

for agent-symmetric outcome rule \(g \) induces strategyproof mechanism \((g, t)\).
Theoretical Results

Summary of Theoretical Results

Theorem 1. Exact admissible classifier \(h(\theta) = \arg \max_{\omega_1 \in \Omega_1} f(\theta, \omega_1) \) with \(f(\theta, \omega_1) = v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1) \) for agent-symmetric outcome rule \(g \) induces strategyproof mechanism \((g, t)\).

Theorem 2. Admissible classifier \(h(\theta) = \arg \max_{\omega_1 \in \Omega_1} f(\theta, \omega_1) \) with \(f(\theta, \omega_1) = v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1) \) for agent-symmetric outcome rule \(g \) that minimizes generalization error induces mechanism \((g, t)\) that minimizes expected ex post regret.
Theoretical Results

Summary of Theoretical Results

Theorem 1. Exact admissible classifier \(h(\theta) = \arg \max_{\omega_1 \in \Omega_1} f(\theta, \omega_1) \)
with \(f(\theta, \omega_1) = v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1) \) for agent-symmetric outcome rule \(g \) induces strategyproof mechanism \((g, t)\).

Theorem 2. Admissible classifier \(h(\theta) = \arg \max_{\omega_1 \in \Omega_1} f(\theta, \omega_1) \)
with \(f(\theta, \omega_1) = v_1(\theta_1, \omega_1) - t_1(\theta_{-1}, \omega_1) \) for agent-symmetric outcome rule \(g \)
that minimizes generalization error induces mechanism \((g, t)\) that minimizes expected ex post regret.

Remarks: Agent symmetry can be dropped, in fact if and only if
Experimental Results

Question: Is there a machine learning framework that does what we want?
Experimental Results

Question: Is there a machine learning framework that does what we want?

Support Vector Machines

- Discriminant-based classifiers for binary classification
- Support efficient, non-linear classification via “kernel trick”

See: (Vapnik 1979), (Vapnik and Cortes 1995)
Experimental Results

Question: Is there a machine learning framework that does what we want?

Support Vector Machines

- Discriminant-based classifiers for binary classification
- Support efficient, non-linear classification via “kernel trick”

See: (Vapnik 1979), (Vapnik and Cortes 1995)

Structural Support Vector Machines

- Discriminant-based classifiers for multi-class classification
- Support efficient, non-linear classification via “kernel trick”

See: (Tsochantaridis et al. 2005), (Joachims et al. 2009)
Experimental Results

Question: How good is proposed approach in practice?

Experiments with three Applications

- Single-item auction with welfare maximizing allocation rule
- Multi-minded combinatorial auction with greedy outcome rule
- Assignment problem with max-min fair allocation rule

Note: First is implementable, last two are not
Experimental Results

Single-Item Auction, Welfare Maximization

- Two agents, one item
- Values independent, uniform on [0, 1]
- RBF kernel with parameters $C \in \{10^4, 10^5\}, \gamma \in \{0.01, 0.1, 1\}$
- Training set size 300, validation test size 1000
Experimental Results

Single-Item Auction, Welfare Maximization (Cont’d)

![Graph showing learned payment vs. value of agent 2 with lines for χ_1 and second price]
Experimental Results

Multi-Minded Combinatorial Auction, Greedy

• Five agents, five items, three bundles each
• To determine bundles:
 ▶ With $p = 1/4$ chose item uniformly from remaining ones
 ▶ With $p = 3/4$ stop
• To determine values:
 ▶ Let c and d_i be m-dimensional vectors with entries chosen uniformly from $(0, 1]$
 ▶ Represent j-th bundle by vector $S_{i,j} \in \{0, 1\}^m$
 ▶ Let value $v(S_{i,j}) = \min_{S'_{i,j} \subseteq S_{i,j}} \left(\frac{\langle S'_{i,j}, \beta c + (1-\beta)d_i \rangle}{m} \right)^\zeta$
 ▶ Where $\beta = 1/2$ and ζ controls degree of complementarity ($\zeta < 1$ means substitutes)
• RBF kernel with parameters $C \in \{10^4, 10^5\}, \gamma \in \{0.01, 0.1, 1\}$
• Training set size 100, 300, 500, validation test size 1000
Multi-Minded Combinatorial Auction, Greedy (Cont’d)
Assignment Problem, Max-Min Fair

- Variable number of n agents and n items
- Values uniformly from $[0, 1]$
- RBF kernel with parameters $C \in \{10, 10^3, 10^5\}$ and $\gamma \in \{0.1, 0.5, 1\}$
- Training set size 600, validation set size 1000
Experimental Results

Assignment Problem, Max-Min Fair (Cont’d)

![Graph showing regret vs number of agents for different functions](image-url)
Conclusion and Future Work

Conclusion

- New paradigm for approximately strategyproof mechanism design
- Based on surprisingly close connection between
 - (Approximately) exact classification
 - (Approximately) strategyproof mechanism design
- Low ex post regret in experiments, even for non-implementable rules

Future Work

- Use this approach to design new mechanisms
- Improve and extend the proposed approach
 - Constrain properties of payment rules (e.g., budgets)
 - Additional design goals (e.g., interim regret)
- Adopt similar approach for setting without money
Conclusion and Future Work

Conclusion

- New paradigm for approximately strategyproof mechanism design
- Based on surprisingly close connection between
 - (Approximately) exact classification
 - (Approximately) strategyproof mechanism design
- Low ex post regret in experiments, even for non-implementable rules

Future Work

- Use this approach to design new mechanisms
- Improve and extend the proposed approach
 - Constrain properties of payment rules (e.g., budgets)
 - Additional design goals (e.g., interim regret)
- Adopt similar approach for setting *without* money
References

Payment Rules for Discriminant-Based Classifiers
P. Dütting, F. Fischer, P. Jirapinyo, J. K. Lai, B. Lubin, and D. C. Parkes
Conference on Electronic Commerce (EC’12), Valencia, Spain, 2012

Payment Rules for Discriminant-Based Classifiers
P. Dütting, F. Fischer, P. Jirapinyo, J. K. Lai, B. Lubin, and D. C. Parkes
Transactions on Economics and Computation (TEAC), to appear